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Abstract  

Grassland loss and degradation has been extensive in the North American Great Plains 

and has resulted in a subsequent decline in biodiversity. The Prairie Pothole Joint Venture (JV) 

conducted a grassland assessment, in coordination with seven other North American Migratory 

Bird JVs within the Great Plains. The goal of this assessment was to provide explicit planning 

and conservation delivery datasets to assist JV partnerships to stem grassland losses and avian 

population declines. We used recent time-series landcover data to spatially identify potentially 

undisturbed lands (PUDL) defined as grass/shrub/wetland complexes with no history of 

agricultural cultivation or development. We conducted supervised classification using Sentinel-2 

satellite data to further refine vegetation composition in the PUDL layer. Finally, we estimated 

grassland loss rates over time and compared those to grassland protection efforts. Within the 

collective JV boundaries, 51.13% of the area was comprised of PUDL, of which 3.71% was 

protected. The supervised classification indicated undisturbed grass made up the majority of the 

PUDL layer in all JVs except Rio Grande, which was dominated by shrubland. Undisturbed 

grass within the PUDL layer composed ~40-65% of the total grassland found in each JV, except 

in the Prairie Habitat and Prairie Pothole where estimates were ~25-30%. We estimated an 

average rate of grassland loss across all JVs in US and Canada of -0.98%/yr using annual time-

series landcover datasets, and an average rate of grassland loss across all JVs in Mexico, US, and 

Canada of -0.23%/year using periodic time-series landcover datasets. Prairie Habitat and Prairie 

Pothole JVs had the smallest percentage of PUDL remaining (17.93% and 25.34% PUDL, 

respectively), with estimated undisturbed grassland loss rates more than doubling the collective 

joint venture averages. We estimated that in the next 10 years undisturbed grassland loss will be 

occurring on average ~7-25 times faster than protection when extrapolating current low and high 

estimates of grassland loss vs. a recent 10-year average annual estimate of grassland protection.  
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Introduction 

North American temperate grasslands are considered the most threatened major 

ecosystem in the world when comparing ratios of habitat conversion to habitat protection across 

all major biomes (Hoekstra 2005). The North American Great Plains has sustained extensive 

grassland loss and degradation since the 1800s due to agriculture, urbanization, exotic plantings, 

afforestation, and loss or suppression of ecological drivers such as native free roaming grazers 

and fire (Knopf 1994, Samson et al. 2004, Brennan and Kuvlesky 2005, Askins et al. 2007). 

Historic grassland losses within temperate North America total approximately 70%, including 

complete conversion of the most productive areas where only remnant tracts remain (i.e., 

tallgrass prairie; Figure 1; Samson et al. 2004, Comer et al. 2018). Recent estimates of 

agricultural conversion and grassland protection in the Northern Great Plains suggest grassland 

loss is occurring five times faster than grasslands can be protected (Doherty et al. 2013).  
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Figure 1. Historic extent (Left) and current extent (Right) of 12 major temperate grassland types 

of the North American Great Plains (from Comer et al. 2018). 

 

Land use intensification in the Great Plains has depleted the land of natural resources and 

disrupted ecosystem services. Grassland conversion to cropland increases the export of water, 

sediment, nitrogen, and phosphorous out of the region (Flynn et al. 2017). Pesticide use and a 

loss of ecologically relevant vegetation have caused biota such as arthropods and birds to 

decline, which also causes a decline in pollination and pest control services (Sauer et al. 2017, 

NABCI 2016, Sanchez-Bayo and Wyckhuys 2019).  

Grassland birds are the fastest declining bird guild in North America, with 74% of 

grassland species in decline, and 53% of their population lost since the 1970’s (~700 million 

birds lost; Rosenberg et al. 2019). Grassland specialists, such as native endemic grassland birds 

of the Great Plains, are some of the fastest declining bird species in North America. For example, 
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The North American Breeding Bird Survey has estimated McCown’s Longspur annual 

population decline is 5.90% since 1966, and has an estimated total population decline of 94% 

(Sauer et al. 2017, Rosenberg 2016). Like other endemic grassland species, McCown’s Longspur 

is specialized in utilizing a particular vegetation composition and structure, and has a breeding 

distribution within the Northern Great Plains of the US and Canada, and winters in southern US 

to the Chihuahuan grasslands of Mexico. Precipitous population declines of grassland specialists 

coupled with an annual-cycle geography that spans three nations necessitates transboundary 

partnerships and a concerted collaborative conservation approach to stem further grassland bird 

declines. Migratory Bird Joint Ventures (JV) are particularly well suited to deliver this 

conservation effort.  

Migratory Bird JVs are collaborative, regional, public-private partnerships that conserve 

habitat for the benefit of priority bird species. JVs bring diverse partners together under the 

guidance of national and international bird conservation plans to design and implement 

landscape-scale conservation efforts. The North American Waterfowl Management Plan 

(NAWMP) established the first JVs (U.S. Department of the Interior and Environment Canada 

1986). Additional JVs were subsequently created to collectively support NAWMP and three 

other bird management plans: the Partners in Flight Landbird Conservation Plan (Rosenburg et 

al. 2016), the United States Shorebird Conservation Plan (Brown et al. 2001), and the North 

American Waterbird Conservation Plan (Kushlan et al. 2002). Conservation delivery by JVs has 

helped protect, enhance, and restore nearly 27 million acres of habitat across North America. JVs 

have a long history of success in public and private collaboration and have leveraged 31 non-

federal partner dollars for every federally appropriated dollar (National Joint Venture 

Communications, Education, and Outreach Team 2018) 
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Cooperation between JVs at larger scales (regional to continental) is only beginning to 

coalesce as JV networks realize the necessity of large scale planning and action for conservation 

of migratory birds across full annual-cycle geographies. JVs utilize the best science and data 

available to inform conservation delivery through decision support tools, such as spatial 

landcover assessments and trends, and species distribution models. JVs are also focused on 

filling information gaps to better understand what factors are inhibiting avian population growth. 

These tools are generally produced separately by each JV, and tools that cross JV boundaries are 

limited. Decision support tools that span full annual-cycle geographies would provide a robust 

approach to priority grassland-dependent bird conservation, with the identification and protection 

of undisturbed native grasslands being paramount. These lands offer greater ecosystem services 

than restored lands and play a critical role in meeting grassland bird needs (Dodds et al. 2008, 

Somershoe 2018). While perpetual protection is not the only conservation tool, it does represent 

a long-term commitment to protection and biodiversity that is easily measured and tracked 

through space and time (Dohery et al. 2013, Walker et al. 2013).  

Our goal was to generate a transboundary grassland assessment across eight Great Plains 

JV administrative boundaries that can inform conservation planning across the full annual-cycle 

of migratory grassland-dependent birds. Our first objective was to spatially identify areas that are 

potentially undisturbed (i.e. lands that have never been tilled or developed) using time-series 

landcover data. The potentially undisturbed lands (PUDL) layer comprises areas of shrub, grass, 

or wetlands that have never been identified as cropland throughout the period of the time-series 

datasets used. Our second objective was to was to further refine the PUDL layer using remote 

sensing classification methods to identify major landcover classifications and two grassland 

types within the PUDL layer: those that are truly undisturbed and those that are disturbed (i.e., 
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plowed/restored grasslands that were not captured as disturbed by the time-series landcover 

data). This geospatial data layer can serve as a companion to the PUDL layer to help direct 

protection, enhancement, or restoration efforts. Our final objective was to estimate the amount of 

PUDL already protected, as well as estimate grassland loss and protections rates. These data 

allow the creation of timeline projection scenarios of grassland loss and protection for the PUDL 

layer that will enable JVs to create conservation goals and understand the scale at which 

conservation must be delivered to meet those goals.  

Methods 

Study area 

Our study area represented the administrative boundaries of the following JVs: Prairie 

Habitat, Prairie Pothole, Northern Great Plains, Rainwater Basin, Playa Lakes, Oaks and Prairies, 

Rio Grande, and the Mexico portion of Sonoran (Figure 2; DOI 2017). This study extent 

generally coincides with the North American Great Plains ecoregion and encompasses 

approximately 920.58 million acres from Canada to Mexico. This area is composed of relatively 

flat topography, with some topographic relief in the form of mountains, hills, table lands, buttes, 

and river drainages. Climate, grazers, and fire were the major ecological drivers in this region. 

Currently, native grazers have largely been replaced with cattle and fire is often suppressed. 

Precipitation generally increases from west to east, and average temperature increases from north 

to south. The region is prone to high winds, drought, and frost. Predominant land cover types in 

this region include croplands and grasslands with various compositions of shrub and wetland 

communities. Shrublands start to dominate the region in the southern expanse, and sagebrush 

becomes more common in the Northern Great Plains JV. Wetlands formed from glacial 

depressions (prairie potholes) are a common feature in the north, wind scoured playa wetlands 
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are scattered across the southern portion of the geography, and rivers bisect the landscape 

throughout. Croplands are most prevalent in the northern/eastern portion of the Great Plains, and 

extend southwest into Kansas and northern Texas. Past analysis has shown grassland loss has 

been extensive throughout the region and loss rate estimates vary spatially and temporally (Table 

1). 

Figure 2. Study area consisting of eight North American Migratory Bird Joint Venture 

administrative boundaries. 
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Table 1. Summary table of published regional grassland conversion rates in the North American Great Plains.  

 

Region Grass type Time period Annual Change Rate Reference 

Canadian PPR Undisturbed 1985-2001 -0.62% Watmough and Schmoll 2007 

Canadian PPR Undisturbed 2001-2011 -0.42% Watmough et al. 2017 

North Dakota Undisturbed 1989-2003 -0.4% Stephens et al. 2008  

North Dakota and 

South Dakota Undisturbed 1979-1997 
-1.30% 

Rashford et al. 2010 

Northern Great Plains Undisturbed 1997-2007 -0.10% Claassen et al. 2011 

Canadian PPR All grass 1985-2001 +1.93% Watmough and Schmoll 2007 

Canadian PPR All grass 2001-2011 + 1.0% Watmough et al. 2017 

Western Corn Belt All grass 2006-2011 -1.0%--5.4% Wright & Wimberly 2013 

U.S. PPR All grass 1997-2009 -0.22% Dahl 2014 

Chihuahua All grass 2006-2011 -1.22% Pool et al. 2014 

CONUS All grass 2008-2012 -5.7M acres (all grass), -1.6M 

acres (undisturbed) 

Lark et al. 2015 

Great Plains All grass 2009-2015 -2% Gage et al. 2016 

Eastern Dakotas All grass 2004-2014 -0.43% Wimberly et al. 2017 

CONUS All grass 2008-2012 -4.2M acres (all grass),  

-3.6M acres (undisturbed) 

Wright et al. 2017 
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PUDL Layer 

Our spatial analysis methods were informed by past work that identified potentially 

undisturbed lands in portions of the Great Plains. We used a similar deductive approach and data 

sources as Gage et al. (2016), who utilized classified remote sensing data, and the work of 

Bauman et al. (2016) and Lark et al. (2017) who used a proprietary vector dataset. Our general 

deductive approach iteratively removed different landcover classes from our study region (i.e., 

erased vector data or masked raster data). We first removed cumulative cropland derived from 

time-series landcover data. Cumulative cropland is defined as any area ever identified as 

cropland over the period of the time-series dataset despite any other classifications it may have 

had (i.e. does not include restored grasslands, such as CRP). We used vector datasets to erase 

areas where roads, railroads, or large water bodies (> 40 ac) occurred. Lastly, we removed 

barren, developed, and forested areas using the most current landcover datasets at the time of 

analysis. The remaining PUDL layer should include mostly grass, shrubs, and small wetlands; 

however given the temporal limitations and difficulties in landcover classification (e.g., 

classification at coarse resolutions and high error rates for some classes) we recognize that the 

PUDL layer includes other cover classes.   

While our methods and results are similar across national boundaries, the datasets we 

used to derive estimates of PUDL are not. Datasets that represent landcover or land use are 

limited spatially and temporally. Spatial limitations are related to the national context of the 

funding source used for landcover projects. Temporal limitations occur because of the recency of 

development and deployment of remote sensing technology used to derive landcover data. See 

Appendix A for a detailed description of the datasets used and the geospatial workflow to obtain 
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a PUDL layer for each country and Appendix B for landcover codes used in each dataset to 

create the PUDL layer. 

 

Supervised Classification 

We classified the landcover within our study region, excluding Sonoran JV due to time 

constraints. Classification was conducted to better define the landcover within the PUDL layer. 

This enabled the identification of cropland that was not identified by the landcover datasets we 

used to develop the PUDL layer. In addition, it provided classifications for Undisturbed grass, 

disturbed grass, and shrub at a 10 m resolution, which will serve as a useful companion dataset to 

the PUDL layer and a useful decision support tool for conservation.  

We used supervised classification of remote sensing data in Google Earth Engine with a 

Random Forest classifier to conduct landcover classification (Gorelick et al. 2017, Breiman 

2001). Google Earth Engine is a cloud-based platform for earth science analysis that hosts 

petabytes of geospatial data, an API and tools for analysis, and multiple machines that run 

processes in parallel for quick and efficient computation. Random Forest is an ensemble machine 

learning algorithm that classifies categorical response variable by generating decision trees from 

training data, partitioning the data and aggregating predictions to improve model fit and increase 

predictive performance.  

We classified seven landcover types using data extracted at reference points from six 

covariates derived from Sentinel-2 Level-1C data and one topographic covariate from a Multi-

scale Topographic Position Index (MTPI). Landcover classes included open water, 

developed/bare, forest, shrub, crop, and two classifications of grassland: potentially undisturbed 
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and disturbed. See Appendix A for more detail on training data, and model tuning and validation. 

See appendix B for google earth engine programming code  

Loss vs. Protection  

 Similar to methods used by Doherty et al. (2013), we estimated annual rates of grassland 

loss versus protection for grassland, shrubland, and wetland complexes in each JV. We obtained 

loss rate estimates using multiple time-series landcover datasets, and we obtained protection rate 

estimates, and the amount of PUDL currently protected, using protected land layer datasets. We 

projected those rates into the future to understand what scale of conservation is needed to meet 

conservation goals under different loss vs. protection rate scenarios. Scenarios included low to 

high estimates of landcover change, recent 10-year average annual protection rate, and the recent 

10-year annual average protection rate doubled and halved. We used the International Union for 

the Conservation of Nature’s (IUCN) definition of protection to identify protected lands (UNEP-

WCMC and IUCN 2018). The IUCN defines protected lands as “…clearly defined geographical 

space, recognized, dedicated and managed, through legal or other effective means, to achieve the 

long-term conservation of nature with associated ecosystem services and cultural values.” 

Grassland loss rates are based on the amount of grasslands tilled or developed over time. We 

used a 10-year annual average protection rate for all grasslands to illustrate what is possible for 

PUDL protection if conservation efforts were focused on these lands. See Appendix A for 

detailed methods and Appendix B for programming code used to derive loss rate estimates. 
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Results 

PUDL Layer 

The tri-national PUDL estimate represented 51.13% of our study area (470.73 million 

acres; Figure 3, Table 2). Lands with a history of cultivation represented 37.62% of the region, and 

an addition 11.25% of the region represented area that were developed, bare, forested, or large 

water bodies. PUDL estimates were greater in western and southern regions, which contained 

less arable land. The Rio Grande, Sonoran, Playa Lakes, and Northern Great Plains JVs had 

higher PUDL estimates than the other joint ventures, with 138.41, 80.25, 79.69, and 64.13 

million acres, respectively. These estimates represented 83.91%, 57.20%, 49.91%, and 68.28% 

of each JV, respectively. The Oaks and Prairies, Prairie Pothole, Prairie Habitat, and Rainwater 

Basin had smaller PUDL estimates, containing 33.70, 29.96, 25.31, and 19.23 million acres, 

respectively. These estimates represented 49.83%, 25.34%, 17.93%, and 55.52% of each JV, 

respectively (Figure 3, Table 2).  
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Figure 3. Potentially undisturbed lands (PUDL) within eight Migratory Bird Joint Ventures of 

the Great Plains region. Figure A) depicts the spatial extent of the PUDL layer and B) 

summarizes the amount of PUDL cover in each joint venture.  

A) 

 

 

 

 

 

 

 

 

 

 

 

 

B)  
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Table 2. Potentially undisturbed lands (PUDL) were spatially identified throughout eight Migratory Bird Joint Venture. This table 

provides summary statistics for the amount of cumulative cropland acres removed, potentially undisturbed lands (PUDL), the amount 

of protected PUDL, the percent PUDL within each joint venture, and the percentage of protected PUDL with each JV’s PUDL layer.  

Joint Venture 

Joint Venture 

Acres 

Cumulative 

Cropland 

Acres PUDL Acres 

Protected PUDL 

Acres 

Percent 

PUDL 

Percent PUDL 

Protected 

Prairie  Habitat 

      

141,170,695.00  

      

118,660,606.34  

    

25,317,401.51  

               

4,829,541.66  17.93 19.08 

Prairie Pothole 

      

118,258,082.85  

        

77,705,570.60  

    

29,965,848.02  

               

2,092,189.00  25.34 6.98 

Northern Great 

Plains 

        

93,932,951.64  

        

19,366,918.59  

    

64,134,414.28  

                   

566,656.15  68.28 0.88 

Rainwater Basin 

        

34,648,368.63  

        

13,680,460.95  

    

19,236,558.80  

                   

259,454.15  55.52 1.35 

Playa Lakes 

      

159,680,533.74  

        

69,350,524.98  

    

79,697,024.79  

                   

949,563.59  49.91 1.19 

Oaks and Prairies 

        

67,632,495.84  

        

13,549,205.67  

    

33,704,557.96  

                   

241,595.94  49.83 0.72 

Rio Grande (USA) 

        

37,468,580.21  

          

1,812,300.88  

    

32,915,094.62  

               

1,255,690.37  87.85 3.81 

Rio Grande 

(MEX) 

      

127,483,822.83  

        

16,511,743.44  

  

105,503,089.94  

               

8,130,333.58  82.76 7.71 

Rio Grande (All) 

      

164,952,403.04  

        

18,324,044.31  

  

138,418,184.56  

               

9,386,023.95  83.91 6.78 

Sonoran 
      

140,303,734.37  
        

15,683,358.61  
    

80,251,251.68  
             

15,731,374.97  57.20 19.60 

All 

      

920,579,265.11  

      

346,320,690.05  

  

470,725,241.60  

             

34,056,399.41  51.13 7.23 
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Supervised Classification 

 Supervised classification accuracy assessment based on out-of-bag error indicated that 

model accuracy was lower in the west and southern regions (Table 3). Overall accuracy was 

78.90% and ranged from 75.52% - 83.70% across the joint ventures. Grass and shrub 

classifications were the poorest performing classes with accuracy ranging from 54.40% to 

77.31%. If the two grass classes were combined into one grass class, overall total accuracy rates 

for the JVs had an average improvement of 4.95% indicating that much of the misclassification 

occurred between the two grass classifications. While we report statistics for these covers within 

the PUDL layer, we acknowledge confidence in these estimates are low.  
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Table 3. Estimated out-of-bag accuracy rates from random forest classification models used to classify seven landcover types using 

2016-2018 Sentinel-2 remote sensing data across the ecoregions of seven Migratory Bird Joint Ventures: Prairie Habitat (PHJV), 

Prairie Pothole (PPJV), Northern Great Plains (NGPJV), Rainwater Basin (RBJV), Playa Lakes (PLJV), Oaks and Prairies (OPJV), 

and Rio Grande (RGJV). 

JV Class 
PUDL 
Grass 

Disturbed 
Grass 

Developed/ 
Bare Water Crop Shrub Forest N Accuracy 

PHJV PUDL Grass 596 140 8 0 19 37 0 800 74.50 

PHJV 
Disturbed 
Grass 133 543 2 0 68 66 13 825 65.82 

PHJV 
Developed/ 
Bare 39 4 625 2 23 1 0 694 90.06 

PHJV Water 3 9 7 654 6 7 4 690 94.78 

PHJV Crop 25 58 36 1 811 19 9 959 84.57 

PHJV Shrub 34 63 2 4 21 500 106 730 68.49 

PHJV Forest 3 16 1 3 4 124 619 770 80.39 

PHJV Total                4,348/5,468 79.52 

PPJV PUDL Grass 487 120 14 0 3 32 0 656 74.24 

PPJV 
Disturbed 
Grass 108 469 2 0 33 78 5 695 67.48 

PPJV 
Developed/ 
Bare 16 2 543 9 3 1 0 574 94.60 

PPJV Water 1 0 10 570 1 2 2 586 97.27 

PPJV Crop 13 26 6 0 699 22 16 782 89.39 

PPJV Shrub 24 69 1 1 12 444 74 625 71.04 

PPJV Forest 0 1 0 2 10 60 516 589 87.61 

PPJV Total                3,728/4,507 82.72 

NGPJV PUDL Grass 471 83 23 0 16 93 3 689 68.36 

NGPJV 
Disturbed 
Grass 96 348 2 0 58 67 1 572 60.84 
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NGPJV 
Developed/ 
Bare 37 8 414 7 4 16 4 490 84.49 

NGPJV Water 1 2 8 474 0 2 3 490 96.73 

NGPJV Crop 39 53 9 0 440 4 0 545 80.73 

NGPJV Shrub 122 66 13 2 2 389 60 654 59.48 

NGPJV Forest 0 4 2 1 0 51 478 536 89.18 

NGPJV Total                3,014/3,976 75.80 

RBJV PUDL Grass 368 75 14 0 4 15 0 476 77.31 

RBJV 
Disturbed 
Grass 77 291 2 1 24 55 30 480 60.63 

RBJV 
Developed/ 
Bare 12 1 384 0 0 1 2 400 96.00 

RBJV Water 0 5 3 398 1 1 0 408 97.55 

RBJV Crop 9 21 0 0 370 0 0 400 92.50 

RBJV Shrub 15 38 2 0 0 314 43 412 76.21 

RBJV Forest 0 6 1 0 0 29 375 411 91.24 

RBJV Total                2,500/2,987 83.70 

PLJV PUDL Grass 727 160 36 0 38 146 0 1107 65.67 

PLJV 
Disturbed 
Grass 178 583 2 0 44 138 9 954 61.11 

PLJV 
Developed/ 
Bare 29 6 694 14 2 27 3 775 89.55 

PLJV Water 0 1 14 753 0 6 1 775 97.16 

PLJV Crop 84 54 13 0 775 14 0 940 82.45 

PLJV Shrub 173 141 11 1 11 672 57 1066 63.04 

PLJV Forest 0 8 1 1 0 52 713 775 92.00 

PLJV Total                4,917/6,392 76.92 

OPJV PUDL Grass 525 60 20 0 3 68 4 680 77.21 

OPJV 
Disturbed 
Grass 84 304 0 0 23 36 0 447 68.01 
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OPJV 
Developed/ 
Bare 20 1 393 6 2 4 4 430 91.40 

OPJV Water 0 0 3 426 1 0 0 430 99.07 

OPJV Crop 15 26 5 0 401 5 0 452 88.72 

OPJV Shrub 84 24 4 0 6 470 63 651 72.20 

OPJV Forest 10 1 3 0 0 75 492 581 84.68 

OPJV Total                3,011/3,671 82.02 

RGJV PUDL Grass 513 167 82 2 22 157 0 943 54.40 

RGJV 
Disturbed 
Grass 166 520 4 4 148 97 3 942 55.20 

RGJV 
Developed/ 
Bare 44 8 687 7 2 52 0 800 85.88 

RGJV Water 2 3 13 750 0 19 9 796 94.22 

RGJV Crop 14 150 3 0 693 22 4 886 78.22 

RGJV Shrub 113 88 23 8 11 845 48 1136 74.38 

RGJV Forest 0 2 0 5 6 37 759 809 93.82 

RGJV Total                4,767/6,312 75.52 

All PUDL Grass 3687 805 197 2 105 548 7 5351 68.90 

All 
Disturbed 
Grass 842 3058 14 5 398 537 61 4915 62.22 

All 
Developed/ 
Bare 197 30 3740 45 36 102 13 4163 89.84 

All Water 7 20 58 4025 9 37 19 4175 96.41 

All Crop 199 388 72 1 4189 86 29 4964 84.39 

All Shrub 565 489 56 16 63 3634 451 5274 68.90 

All Forest 13 38 8 12 20 428 3952 4471 88.39 

All Total                26,285/33,331 78.86 
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We estimated 50.04% of our study region, excluding the Sonoran JV, is composed of 

potentially undisturbed lands (390.47 million ac). Supervised classification results indicated that 

the PUDL layer in this region is composed of 21.15% undisturbed grass (165.00 million acres), 

15.56% shrub (121.41million acres), 8.41% disturbed grass (65.65 million acres), and 4.92% 

other cover types (i.e. crop, forest, etc.; 38.38 million acres; Figure 4, Table 4). Shrub was the 

dominate cover class in Rio Grande JV’s PUDL layer and was a considerable component in 

Oaks and Prairies, Playa Lakes, and Northern Great Plains joint ventures. Undisturbed grass 

made up the largest component of the PUDL layer in every JV except Rio Grande. The largest 

amounts of undisturbed grass in the PUDL layer were in the Playa Lakes, Northern Great Plains, 

and Rio Grande JV (44.59, 35.78, 33.08 million acres, respectively). The remaining JVs all have 

similar amounts of undisturbed grass within their PUDL layers (range: 12.05-13.84 million 

acres). 

Supervised classification indicated that Playa Lakes JV had the highest amount of total 

grass (undisturbed grass and disturbed grass combined both within and outside the PUDL layer; 

88.76 million acres), with 50.24% being classified as undisturbed grass contained within the 

PUDL layer (Figure 5). Rio Grande and Northern Great Plains JV had similar estimates of 59.39 

and 60.06 million acres total grass, with 55.69% and 59.58% being undisturbed grass in the 

PUDL layer, respectively. Prairie Habitat and Prairie Pothole JVs had similar estimates of total 

grass with 54.71 and 41.84 million acres, but only 25.31% and 29.32% of that was classified as 

undisturbed grass within the PUDL layer, respectively. Rainwater Basin and Oaks and Prairies 

JVs has the smallest estimates of total grass with 20.67 and 30.83 million acres, and 64.75% and 

39.10% being classified as undisturbed grass within the PUDL layer, respectively. 
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Figure 4. Landcover classification derived from Sentinel-2 remote sensing imagery at a 10m 

resolution, depicted and summarized within potentially undisturbed lands (PUDL) layer. Figure 

A depicts the spatial extent of grass and shrub classes within the PUDL layer, and Figure B 

summarizes all different landcover within the PUDL layer for seven Migratory Bird Joint 

Ventures. 

A)  
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Table 4. Summary of supervised classification landcover (acres) within the PUDL layer, and all grass cover within each joint venture 

boundary (i.e., undisturbed grass and disturbed grass classifications both inside and outside the PUDL layer). 

  PUDL Acres All Acres 

 Joint 

Venture  

Undisturbed 

Grass 

Disturbed 

Grass Developed/Bare Water Crop Shrub Forest Grass 

PHJV 13,848,864.39 4,213,348.21 206,028.14 1,533,425.97 301,148.54 3,297,428.72 1,890,487.06 54,714,439.03 

PPJV  12,273,444.56 8,717,159.43 488,883.48 1,060,996.62 935,363.44 5,027,739.11 1,461,928.43 41,848,001.06 

NGPJV  35,785,204.62 12,182,314.16 2,193,826.38 241,802.10 971,211.58 11,523,062.31 1,232,578.40 60,066,243.96 

RBJV  13,355,708.34 3,988,661.00 166,636.89 163,038.20 186,439.68 914,223.83 461,575.49 20,627,115.62 

PLJV  44,599,309.60 13,499,891.81 1,868,889.22 262,521.44 1,520,077.21 16,431,757.96 1,519,034.50 88,768,825.17 

OPJV  12,056,417.35 6,357,063.11 706,859.57 341,643.05 272,080.17 10,488,130.08 3,482,947.20 30,830,532.48 

RGJV  33,080,857.95 16,694,229.26 6,178,750.61 444,315.77 1,485,490.02 73,728,388.32 6,801,434.95 59,393,676.39 

All  164,999,806.79 65,652,666.99 11,809,874.29 4,047,743.14 5,671,810.65 121,410,730.34 16,849,986.02 356,248,833.72 
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Figure 5. Landcover classification derived from Sentinel-2 remote sensing imagery at a 10m 

resolution, summarized for seven Migratory Bird Joint Ventures, which include the Northern 

Great Plains (NGPJV), Oaks and Prairies (OPJV), Prairie Habitat (PHJV), Playa Lakes (PLJV), 

Prairie Pothole (PPJV), Rainwater Basin (RBJV), and Rio Grande (RGJV). Light green indicated 

the amount of undisturbed grass classified within the potentially undisturbed lands layer 

(PUDL), whereas dark green indicates the total amount of disturbed and undisturbed grass (i.e., 

both inside and outside the PUDL layer) classified in each joint venture.  

 

 

 

 

 

 

 

 



 

23 
 

Loss vs. Protection 

We estimated 7.23% of PUDL layer was protected (34.05 million acres; Figure 6, Table 

2). Roughly 84% of the protected PUDL occurred in Mexico and Canada. The Mexico portion of 

the Sonoran and Rio Grande JV, and the Prairie Habitat JVs had 15.73, and 8.13, 4.82 million 

acres of protected PUDL, respectively (19.60% 7.71%, 19.08% of their respective PUDL layers 

were protected). Roughly 80% of the protected PUDL in the US occurred in the Prairie Pothole, 

Rio Grande (US portion), and Playa Lakes JVs, containing 2.09, 1.25, and 0.94 million acres, 

respectively (6.98%, 3.81%, and 1.19% of their respective PUDL layers were protected). 

Northern Great Plains, Rainwater Basin, and Oaks and Prairies JVs had the smallest amounts of 

protected PUDL, containing 0.56, 0.25, and 0.24 million acres, respectively (0.88%, 1.35%, and 

0.72% of their respective PUDL layers were protected).  
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Figure 6. Protected and unprotected potentially undisturbed lands (PUDL) within eight 

Migratory Bird Joint Ventures of the Great Plains region. Figure A) depicts the spatial extent of 

protected and unprotected PUDL, and figure B) summarizes the amount of protected and 

unprotected PUDL cover and protected PUDL in each joint venture.  

A) 

 

 

 

 

 

 

 

 

 

 

 

B)  

 

 

 

    

 

 

 



 

25 
 

We presented a range of loss rate estimates for undisturbed grassland, shrubland, and 

wetland complexes per JV based on annual and periodic time-series landcover datasets (Figures 

7 & 8, Table 5). Prairie Habitat and Prairie Pothole JVs had the highest undisturbed cover loss 

rate estimates based on annual time-series data (-2.62%/yr and -2.27%/yr, respectively) and 

periodic time-series data (-0.44%/yr and -0.65%/yr, respectively). Rainwater Basin and Playa 

Lakes JVs had high annual loss rate estimates from annual landcover data (-0.54%/yr and -

0.61%/yr, respectively), but much lower estimates from periodic landcover data (-0.22%/yr and -

0.19%/yr, respectively). Oaks and Prairies and Northern Great Plains JVs had lower loss rate 

estimates from both annual (-0.43%/yr to -0.30%/yr, respectively), and periodic landcover data (-

0.13%/yr to -0.11%/yr, respectively). The US portion of the Rio Grande JV had the lowest loss 

rate estimate as calculated by either method (-0.07%/yr from CDL and -0.05%/yr from NLCD). 

In Mexico, loss rate estimates from INEGI for Sonoran and Rio Grande JVs were -0.03%/yr and 

-0.22%/yr, respectively.  
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Figure 7. Tracking change in total cover and undisturbed cover over time within Migratory Bird Joint Ventures using annual cropland 

data layers. Data include Agriculture Agri Foods Canada Annual Crop Inventory in Canada, and National Agricultural Survey 

Statistics Cropland Data Layer in the US. Cover is defined as grass, shrub and wetlands. Total cover tracks the amount of cover 

present each year despite past classifications. Undisturbed cover tracks the amount of cover each year that has never been classified as 

crop or developed. The three gray trend lines estimate the rate of change for total cover (i.e. dotted line), undistured cover (i.e. 

dot/dash line), and total and undisturbed cover together (i.e. solid line). 
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Figure 8. Tracking change in total cover and undisturbed cover over time within Migratory Bird Joint Ventures using periodic 

landcover data layers. Data include Agriculture Agri Foods Canada Land Use in Canada, National Land Cover Database in the US, 

and Instituto National de Estadistica y Geographia Uso de Suelo y Vegetation in Mexico. Cover is defined as grass, shrub and 

wetlands. Total cover tracks the amount of cover present each year despite past classifications. Undisturbed cover tracks the amount of 

cover each year that has never been classified as crop or developed. The three gray trend lines estimate the rate of change for total 

cover (i.e. dotted line), undistured cover (i.e. dot/dash line), and total and undisturbed cover together (i.e. solid line).
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Table 5. Annual rates of grassland loss and average annual acres protected were calculated for eight Migratory Bird Joint Ventures 

over a 10+ year period. Average annual acers protected were estimated using a 10 year mean using protected lands layer databases. 

Loss estimates were derived from annual cropland and periodic landcover datasets. We calculated the rate of change for the total 

amount and the undisturbed amount of grass/shrub/wetlands present each year, where disturbance is classified as being identified as 

crop or developed. We also present rates of grassland change from other sample-based studies/literature.  

Joint 

Venture 

Protection: 

Protected Lands 

Data 

Landcover Change: Annual Crop 

Classification Data Landcover Change: Periodic Landcover Data 

Years 

Avg. 

Annual Ac 

Protected Years 

Rate 

Undisturbed 

(SE) 

Rate 

All 

(SE) 

Rate 

Total 

(SE) Years 

Rate 

Undisturbed 

(SE) 

Rate 

All 

(SE) 

Rate 

Total 

(SE) 

Prairie 

Habitat 

2007-

2016 5,626.16 

2011-

2017 -5.30 (0.71) 

-2.62 

(1.76) 

0.05 

(0.36) 1990, 2000, 2010 

-0.44 

(0.004) 

-0.44 

(0.005) 

-0.45 

(0.003) 

Prairie 

Pothole 

2005-

2014 41,780.41 

2008-

2018 -2.40 (0.20) 

-2.27 

(0.41) 

-2.14 

(0.34) 

2001, 2004, 2008, 

2011, 2013, 2016 -0.66 (0.03) 

-0.65 

(0.06) 

-0.63 

(0.11) 

Northern 

Great Plains 

2005-

2014 5,358.55 

2008-

2018 -0.55 (0.07) 

-0.43 

(0.14) 

-0.30 

(0.07) 

2001, 2004, 2008, 

2011, 2013, 2016 -0.16 (0.02) 

-0.13 

(0.02) 

-0.10 

(0.02) 

Rainwater 

Basin 

2005-

2014 4,389.60 

2008-

2018 -0.55 (0.08) 

-0.54 

(0.11) 

-0.53 

(0.08) 

2001, 2004, 2008, 

2011, 2013, 2016 -0.23 (0.01) 

-0.22 

(0.01) 

-0.21 

(0.02) 

Playa Lakes 

2005-

2014 39,479.39 

2008-

2018 -0.88 (0.10) 

-0.61 

(0.25) 

-0.34 

(0.14) 

2001, 2004, 2008, 

2011, 2013, 2016 -0.22 (0.02) 

-0.19 

(0.02) 

-0.16 

(0.02) 

Oaks and 

Prairies 

2005-

2014 11,615.15 

2008-

2018 -0.61 (0.11) 

-0.30 

(0.22) 

0.0002 

(0.12) 

2001, 2004, 2008, 

2011, 2013, 2016 -0.16 (0.02) 

-0.11 

(0.03) 

-0.06 

(0.03) 

Rio Grande 

(US) 

2005-

2014 2,697.61 

2008-

2018 -0.18 (0.04) 

-0.07 

(0.09) 

0.04 

(0.04) 

2001, 2004, 2008, 

2011, 2013, 2016 -0.06 (0.02) 

-0.05 

(0.01) 

-0.05 

(0.02) 

Rio Grande 

(MEX) 

2008-

2017 186,067.51     

2002, 2007, 2011, 

2014 -0.3 (0.04) 

-0.22 

(0.06) 

-0.14 

(0.04) 

Sonoran 

2008-

2017 171,184.52     

2002, 2007, 2011, 

2014 -0.16 (0.01) 

-0.03 

(0.09) 

0.09 

(0.04) 
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The Mexico portion of the Rio Grande  and Sonoran JVs had the highest rate of 

protection, with a 10-year average annual conservation effort of 186,067 and 171,185 acres, 

respectively (Figure 9, Table 5). In the US, the Prairie Pothole, Playa Lakes, and Oaks and 

Prairies JVs had the highest 10-year average annual conservation rates of 41,780, 39,479, and 

11,615 acres, respectively. The remaining regions’ 10-year average annual conservation efforts 

ranged from 2,698 acres in the US portion of the Rio Grande JV to 5,626 acres in the Prairie 

Habitat JV. 

 Projection of undisturbed grassland loss versus protection over the next 200 years showed 

spatially variable results across the joint ventures (Figure 9). Despite the variability of loss and 

protection rate estimates between the JVs, in general, undisturbed grassland loss well exceeded 

rates of protection in each JV. Average annual estimates of PUDL loss in the next 10 years using 

low and high loss rate estimates was 19.37 - 103.61 times higher, respectively, than the average 

annual protection estimate in the Prairie Habitat JV (i.e. average acres lost:average acres 

protected). It was 15.46 – 50.37 times higher in the Northern Great Plains JV; 9.54 – 23.04 times 

higher in the Rainwater Basin JV; 4.51 – 14.55 times higher in the Prairie Pothole JV; 3.80 – 

11.95 in the Playa Lakes JV; 3.17 – 8.58 times higher in the Oaks and Prairie JV; 6.09 – 8.51 in 

the Rio Grande (US) JV; 1.62 – 2.20 times higher in the Rio Grande JV (MEX); and 0.14-0.74 

times higher Sonoran JV (MEX).  
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Figure 9. Rates of loss versus protection for potentially undisturbed lands (PUDL) projected into the future 200 years for 8 Migratory 

Bird Joint Ventures in the Great Plains regions; The Rio Grande Joint Venture has separate graphs for the US and Mexico regions, and 

the Sonoran Joint Venture only includes estimates for its region in Mexico. Two loss rate estimates were derived from landcover data, 

and the amount of protected PUDL (green) and three rates of protection (average, and averaged halved and doubled) were derived 

from protected lands layers available in each country. 
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Discussion 

PUDL Layer 

 A tri-national grassland assessment of undisturbed lands is an important planning tool 

given the full annual-cycle geographies of migratory birds in the Great Plains. Having a common 

source for landscape scale conservation planning will allow all JVs to implement conservation 

strategies within their respective JVs that build into full annual-cycle conservation for priority 

species across JVs. However, conservation planning initiatives need to consider the differences 

in the datasets used to create the PUDL layer and how it affects estimates in each country.  

 The Common Land Unit dataset (CLU) used in the US is an excellent resource for 

capturing disturbance (Table A1). Its fine-scale delineations of field boundaries are superior to 

that of a 30m pixel resolution, and there are no uncertainties in classification. However, not all 

prior disturbances can be captured through this dataset. For example, some cropland parcels may 

not be included in the CLU dataset because they were not enrolled in a USDA program. 

Therefore it is more likely that the PUDL layer will include false positives than false negatives in 

the United States. In contrast, the Agriculture and Agri Foods Canada Land Use and Annual 

Crop Inventory datasets used to produce the PUDL layer in Canada are prone to misclassification 

at the pixel level, and our methods accumulate those errors over the years. This means that in 

Canada the PUDL layer is likely to have more false negatives than in the US or Mexico. In 

Mexico the INEGI dataset is produced at irregular intervals and at a relatively large scale 

(1:250,000), therefore more recent disturbances or disturbances occurring during interim periods 

may not have been captured. Therefore, this region’s PUDL layer will have more false positives 

than negatives. It should be noted however, that despite the large scale of the dataset, the amount 

of arable land in the Rio Grande Joint Venture is limited and cropland is less spread out and 
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more localized, making detection and mapping easier. It should also be noted that the supervised 

classification of landcover within the PUDL layer should help capture false positives (i.e. 

cropland) within the layer, and the identification of the undisturbed grass cover class outside the 

PUDL layer could help identify areas that were removed due to misclassification of crop in the 

landcover layers used to develop the PUDL layer (i.e. false negatives).  

     

Supervised Classification 

Supervised classification efforts performed better in the northern and eastern regions than 

for the western and southern regions. Overall accuracy, and grass/shrub accuracy was often 

below a target accuracy of 80%. Even with a three year collection of imagery, cloud 

contamination was an issue and often capturing the period of greenup was missed. A finer spatial 

resolution did help identify small features (e.g., forested ravines), however accurately capturing 

the heterogeneity of the landscape at a finer resolution also required increased training data and 

analysis effort. Even the ground-truthed dataset in the Rainwater Basin JV required extra training 

data for grasslands that were under sampled in the west. 

While the landcover product we produced has sub-optimal accuracy in some regions, we 

feel that we’ve established methods and training data that can be easily shared, augmented, and 

implemented in Google Earth Engine for future improvement (see Appendix B for google earth 

engine code with training data). Some recommendations to improve classification accuracy 

would be to use the newly uploaded bottom-of-the-atmosphere Sentinel-2 level-2A product, 

which has a start date of March 2017. In addition the exploration of other remote sensing indices, 

or soils and landform datasets could help improve classification accuracy. Fisher et al. (2018) has 

recently evaluated the use of high-resolution Light Detection and Ranging (LiDAR) for 
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classification of native grasslands. They demonstrated high confidence in the ability to identify 

tractor furrows in fields that have been plowed but have since revegetated with native and tame 

grasses. These techniques are currently being used by the South Dakota State University 

Extension Service to identify undisturbed grasslands throughout the state with high accuracy. 

However, LIDAR data is currently unavailable in much of the Great Plains and Chihuahuan 

Desert. 

 

Loss vs Protection 

Projecting loss and protection rates into the future across the study area is a good visual 

exercise for estimating which regions need the largest conservation effort, and which regions are 

not at risk or are doing well at stemming grassland loss (Figure 7). However, there are many 

assumptions that must be recognized to better understand what is being presented. We are 

assuming that the undisturbed habitat loss rates derived from grass/shrub/wetland complexes in 

the start year of our time-series dataset, will also apply to the current PUDL layer, which is likely 

an overestimate as a large portion of PUDL occur in areas that are less prone to cultivation 

(WWF 2018). Visualization of undisturbed grassland over time supports this concept, as the rate 

of change tends to decrease later in the time-series. In addition, some JVs such as Rio Grande 

have less arable land (e.g. Chihuahuan Desert, Sierra Madres) but are losing grassland quickly in 

valley regions, so summarizing loss at a JV scale may not accurately represent the extent of the 

problem. We are also assuming that the entirety of the conservation effort each year will be put 

towards protecting PUDL, which is unlikely, however these estimates represent what is possible 

given the average effort. Many JVs employ a variety of conservation programs to ensure 

grasslands remain on the landscape, including fee-title acquisition, conservation easements, cost-



 

34 
 

share, or other short-term programs. Keeping the remaining undisturbed grasslands part of 

working agricultural operations is a key conservation strategy in certain regions. Often cost-share 

for grazing infrastructure and conservation easements can be combined to achieve this objective. 

We recognize that estimating undisturbed grassland loss rates via landcover classification 

products from remote sensing data lacks accuracy due to the uncertainty associated with 

classifying different cover types, the sensitivity/specificity of the models used to classify certain 

cover types, and the type of classification used (pixel-based or object-based). However, 

comparing loss rates across JV boundaries is an important conservation planning exercise. While 

the loss rates we presented are crude estimates, we did employ methods that lessen in the 

influence of model uncertainty in classification, balance the differences inherent in classification 

models (annual crop-based vs. periodic landcover-based), and supply estimates from datasets 

that are relatively comparable across national boundaries.  

We also recognize that protection estimates are subject to data limitations which hinder 

accuracy. This is largely due to the lack of complete protection data or how protection is defined 

across boundaries. Presentation and review of the best currently available data is a starting point 

and may urge the improvement of these data sources. Protection estimates presented here are 

limited to those lands that meet IUCN definition for protection, and these lands are often only a 

subset of each protected lands spatial layer. There are other protected lands that may not have a 

clear definition, or have a definition of protection that allows disturbance such as mineral 

extraction, which would prohibit their inclusion under IUCN standards (i.e. State Land Board 

lands; GAP status code 2 or 3). In some regions these other protected lands can make up a large 

percentage of the PUDL layer; for example, 20.49% of the Norther Great Plains PUDL layer is 

composed of other protected lands such as Bureau of Land Management (BLM) but only 0.88% 
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is protected as defined by IUCN. In all of the U.S. JVs in the Great Plains, BLM lands within the 

PUDL layer total 8.1 million acres (Norther Great Plains JV 4.91, Prairie Pothole JV 2.55, and 

Playa Lakes JV 0.63). The Prairie Pothole JV considers BLM land as part of the conservation 

estate, although these lands do not have the extent of oil and gas exploration compared to other 

areas like the Powder River Basin in Wyoming. Very few JVs have developed conservation 

estate data that provide a comprehensive ranking of protection levels across the range of 

landownership. Maintaining these data will enable JVs to track and understand the level of 

protection in their respective geographies and can be aggregated for a more accurate overall 

conservation estate layer.  

While our trend analyses are focused on potentially undisturbed grassland, it is important 

to note that when tracking total grass/shrub/wetland cover the trends were often less severe, 

stable (e.g. Oaks and Prairies), or increasing (e.g., Prairie Habitat Joint Venture). Restoring 

grassland is an important conservation tool (e.g., CRP), however when coupled with a strong 

decline in potentially undisturbed grass (e.g. native grass), the underlying processes should be 

given greater scrutiny. For example, these kinds of trends have spurred new policy such as the 

Sob Buster program in the United States, which was established to prevent producers from 

putting cropland into a conservation program and then breaking native sod to replace the 

cropland that was taken out of production. Furthermore, restoration efforts need to recognize the 

system in which they are being placed, and seed with ecologically relevant vegetation and 

provide the ecological drivers organisms evolved with.  
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Conservation Planning   

 Our analyses estimated the spatial distribution of undisturbed land, the landcover 

composition within the PUDL layer, and a spatial summary of grassland loss versus protection. 

These three tools can help support conservation decisions across the region. While each JV faces 

unique challenges, these tools serve as a baseline for tracking future change and support 

decisions for moving forward. In general, these tools can support common conservation 

decisions regarding land protection, enhancement, or restoration.  

Canada for example has adopted the Conservation on Biological Diversity Strategic Plan 

and has agreed to protect 17% of their land and freshwater by 2020 (Coristine et al. 2018). They 

have ~6% more to protect to reach that goal based on current protected lands layers. The Prairie 

Habitat JV contains a high richness of species at risk, a high undisturbed grassland loss rate, a 

low protection rate, and a low proportion of this region is protected PUDL (~3%). Indeed, 

timeline projections illustrate a need for increased protection effort in the PHJV, and the PUDL 

layer could serve as a useful tool to direct protection to help Canada reach their legal 

responsibility of protecting 17% of their land and stem the decline of biodiversity in this region. 

Conservation prioritization and targeting can be enhanced when utilizing the PUDL layer 

in concert with or integrating it into other spatial tools. It would be useful to use the PUDL layer 

in conjunction with a risk-of-conversion layer (Olimb and Robinson 2019) or resiliency layer 

(Grand et al. 2019) to prioritize protection of PUDL based on conservation goals. Similarly, the 

supervised landcover classification layer and the PUDL layer could be used as covariates in 

species distribution models, which would also be beneficial for directing full-annual cycle 

conservation efforts for priority species. This would be especially useful for species that span 

political boundaries and modeling efforts that benefit from a greater thematic resolution of 
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grassland conditions. In addition, the supervised classification layer and the PUDL layer could 

be used to target areas with shrub encroachment for enhancement efforts, or target cropland near 

or between large blocks of grassland for restoration efforts to increase patch size and/or 

grassland connectivity.  

These are just a few examples of how these tools can support conservation work in the 

Great Plains. Making these tools publically available will support other partners’ projects and 

further conservation work in the region. We hope that these tools can be expanded, improved, 

and updated as we work to stem grassland decline and loss of biodiversity in the Great Plains. 

This assessment is only the first step in a process to galvanize the eight JVs to move forward as a 

network for grassland conservation. Joint ventures are built on the power of partnerships and we 

must bring people and resources together to address the complex issues facing our grasslands.  
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Appendix A: Detailed Methods 

Methods  

PUDL: Country Specific Data Sources and Methods 

Data Sources and Methods: United States 

In the United States we employed a deductive approach using a proprietary geospatial 

time-series vector dataset and other sources to create a PUDL layer. The time-series dataset was 

developed by United States Department of Agriculture (USDA) Farm Service Agency (FSA) and 

is called the Common Land Unit (CLU) dataset (FSA 2014). A common land unit is defined as 

the smallest unit of land that has a boundary, and a common land use, owner, and producer 

association. CLU was first established in 1998 and in some regions has incorporated spatial data 

dating back to 1956 via the Soil Bank program (i.e., paper maps). The FSA continually updates 

the CLU dataset by spatially delineating land units that have participated in USDA programs. 

Therefore any lands that are cultivated but not enrolled in USDA programs will not be added to 

the dataset. Additionally, any data pertaining to cultivation prior to 1956 are not available. 

Furthermore, as detailed by Bauman et al. (2016), if a parcel has been historically cropped but 

has a change in ownership or use that prohibits cultivation in perpetuity, then those areas can be 

converted to a “non-crop” indicator code or removed from the CLU dataset; those grassland 

areas are henceforth referred to as “go-back lands”.  

We received ten years of CLU data from FSA under a memorandum of understanding. 

Most counties in the US portion of our study region had ten years of CLU data except for some 

counties in New Mexico that were lacking data in 2008. CLU coverage at the county-level was 

variable both spatially and temporally. Generally, CLU coverage was lower around the perimeter 

of our study area and in some southern counties. In some counties, CLU spatial coverage would 

change over the ten year period suggesting the presence of go-back lands.  
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CLU spatial delineation is currently accomplished using heads-up-digitization of 

orthophotography in a Geographic Information System (GIS), but has utilized paper aerial 

photography and maps in the past. The dataset has a dedicated team of data stewards at national, 

state, and local levels, which utilize digitizing centers, and a standardized protocol and suite of 

GIS tools for digitization and quality control purposes. CLU parcels are associated with a table 

of attributes; a landcover attribute field indicated landcover classification and a field called 

3_CM was added in 2012, which indicates if a parcel has ever had a cropping history despite its 

current cover.  

There are ten landcover types identified in the CLU dataset: rangeland, cropland, other 

agriculture, urban, water body, forest, barren, mined land, permanent ice and snow, and tundra. 

Cropland is defined as “…newly broken…currently being tilled…not currently tilled but have 

been tilled in a prior year…” and other similar scenarios (FSA 2014). The classification other 

agriculture is a catch-all for areas on agricultural land not used for production, which include 

“…farmsteads, holding areas for livestock such as corrals, breeding and training facilities on 

horse farms, farm lanes and roads, ditches and canals, small farm ponds, and similar uses”. We 

did not incorporate the other agriculture landcover class into our analyses because under 

exploratory analyses we determined that often large drainages were included in this class, and 

given their topographic relief these areas are often undisturbed. To identify lands that have a 

cropping history, and increase our chances of removing go-back-lands, we used multiple years of 

CLU data from 2008-2011 and 2013-2018, and both the landcover and 3-CM fields. Each year 

we extracted any parcel that was identified as cropland or had a cropping history and erased 

these areas from a polygon that delineated our study area in the U.S.  
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We used the 2011 National Land Cover Database (NLCD; Homer et al. 2011) to remove 

bare ground, forested, and developed areas. We extracted pixels identified as bare ground, 

forests, and developed areas, converted those pixels to polygons, and erased them from our study 

area. The NLCD is created by a partnership of federal agencies called the Multi-Resolution Land 

Characteristics Consortium. It is a 30 m resolution raster depicting broad landcover types that 

were classified using decision tree methods and 2011 Landsat imagery. The landcover types 

removed are defined as bare ground where vegetation makes up less than 15% of total cover, 

trees greater than 5 m tall that make up greater than 20% of total vegetation cover, and developed 

areas that range from urban lawns to areas where impervious surfaces make up 80-100% of the 

total cover.  

We used the USGS high resolution National Hydrologic Database (NHD; McKay et al. 

2012) to extract any waterbody >= 40 ac and erased these features from the U.S. portion of our 

study region. We did not however remove playa lakes >= 40 ac. NHD is a vector dataset that 

contains waterbodies mapped at a 1:24,000 scale or better. The dataset is updated and maintained 

through partnerships with state and collaborative bodies. A 40 ac threshold was selected to 

maintain methods utilized by similar past studies (Bauman et al. 2016) that removed large 

waterbodies to obtain a more accurate assessment of undisturbed grass/shrub/wetland complexes.  

Lastly, we erased areas identified as roads and rails using the TIGER/Line transporation 

dataset which includes geospatial extracts from the U.S. Census Bureau’s Master Address 

File/Topologically Integrated Geographic Encoding and Referencing database (MAF/TIGER; 

TIGER/Line 2017). TIGER/Line shapefiles contain nationwide street centerline geospatial data 

in vector format. It was first released in 1989 and derived from United States Geologic Survey 

(USGS) Digital Line Graph (1:1,000,000-scale) and has been continually updated since then 
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using data provided by partners from local, state, and federal governments. We removed paths 

and trails from the dataset, buffered major roads by 25 m and local roads and rails by 15 m, and 

erased these areas from our study area. These areas were removed because they represent areas 

of disturbance. The buffer distances we selected were informed using a sample of measurements 

across road types where the straight line distance includes the road surface and ditches (i.e., 

generally fence line to fence line). See Appendix A for classification codes used in analysis.  

Data Sources and Methods: Canada  

In the Prairie Habitat Joint Venture we employed a deductive approach using publically 

available raster time-series landcover data and other data sources to create a PUDL layer. We 

used 30 m landcover time-series rasters from Agriculture Agri-Foods Canada (AAFC). We used 

nominal years 1990, 2000, and 2010 Land Use datasets (LU; 

http://www.agr.gc.ca/atlas/supportdocument_documentdesupport/aafcLand_Use/en/ISO_19131_Land_Use

_1990__2000_2010_Data_Product_Specifications.pdf) and 2011-2017 Annual Crop Inventory (ACI; 

http://www.agr.gc.ca/atlas/supportdocument_documentdesupport/annualCropInventory/en/ISO%2019131_

AAFC_Annual_Crop_Inventory_Data_Product_Specifications.pdf) datasets to identify cumulative 

cropland and masked these areas from the 2017 ACI. We then identified and masked barren, 

forest, and developed landcover types from the 2017 ACI and converted the raster to polygon.  

AAFC LU datasets were created using multiple data sources and a “preponderance of 

evidence” set of rules. It was created for all of Canada south of 600 N and has overall accuracy 

assessment of  89.1%, 90.6%, and 94.7% for 1990, 2000, and 2010, respectively (if water and 

wetland classes are grouped together). AAFC ACI datasets were created using remote sensing 

data, training and testing data, and decision tree based classification methods. Radar data came 

from RADARSAT-2 (2011-2017), and optical data came from Landsat 5 (2011-2012), Landsat 8 

http://www.agr.gc.ca/atlas/supportdocument_documentdesupport/aafcLand_Use/en/ISO_19131_Land_Use_1990__2000_2010_Data_Product_Specifications.pdf
http://www.agr.gc.ca/atlas/supportdocument_documentdesupport/aafcLand_Use/en/ISO_19131_Land_Use_1990__2000_2010_Data_Product_Specifications.pdf
http://www.agr.gc.ca/atlas/supportdocument_documentdesupport/annualCropInventory/en/ISO%2019131_AAFC_Annual_Crop_Inventory_Data_Product_Specifications.pdf
http://www.agr.gc.ca/atlas/supportdocument_documentdesupport/annualCropInventory/en/ISO%2019131_AAFC_Annual_Crop_Inventory_Data_Product_Specifications.pdf
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(2013-2017), Sentinel-2 (2016-2017), and Gaofen-1 (2016-2017). These methods have produced 

overall accuracy for 2011-2017 cropland classes >= 85%.  

We used the World Wildlife Fund hydroLAKES database to identify and erase large 

water bodies (>= 40 ac) from the study area (Messaner et al. 2018). This is a global database that 

maps open water >= 10 ha as polygons. Sources to create this database vary by location. In 

Canada the dataset is produced from Canadian hydrographic dataset (CanVec; 1:50,000 scale, 

Natural Resources Canada 2013), Shuttle Radar Topographic Mission Water Body Data (1 arc-

second raster, Slater et al. 2006), Global Lakes and Wetlands Database (1:1 million scale or 

better, Lehner and Doll 2004), Global Reservoir and Dam database (1:1 million scale or better, 

Lehner et al. 2011), and World Wildlife Fund mapping 1:1 million scale or better).  

Lastly we used the National Road and Rail Network vector dataset to erase roads and 

rails throughout the study area 

(http://ftp.maps.canada.ca/pub/nrcan_rncan/vector/geobase_nrwn_rfn/doc/GeoBase_nrwn_en_Catalogue.

pdf). Prior to erasing these areas we buffered major roads by 25 m, and minor roads and rails by 

15 m. The National Road and Rail Network databases are produced through intergovernmental 

partnerships that provide data updates at least once a year using a homogenous and standardized 

approach to represent centerline road phenomena at an approximate resolution of 1:10,000. See 

Appendix A for classification codes used in analysis.  

Data Sources and Methods: Mexico  

   In the Mexico portion of the Rio Grande Joint Venture we employed a deductive 

approach using publically available vector time-series landcover data and other data sources to 

create a PUDL layer. We used INEGI uso de suelo y vegetation time-series landcover datasets, 

serie 3-6 (INEGI 2005, 2009, 2013, and 2016). These are vector data produced from remote 

http://ftp.maps.canada.ca/pub/nrcan_rncan/vector/geobase_nrwn_rfn/doc/GeoBase_nrwn_en_Catalogue.pdf
http://ftp.maps.canada.ca/pub/nrcan_rncan/vector/geobase_nrwn_rfn/doc/GeoBase_nrwn_en_Catalogue.pdf
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sensing imagery at a 1:250,000 scale. Serie 3-6 were produced using Landsat imagery from the 

following sensors and years: serie 3 used Landsat 7 ETM+ imagery from 2002, serie 4 used 

Landsat 5 imagery from 2007, serie 5 used Landsat 5 imagery from 2011, and serie 6 used 

Landsat 8 imagery from 2014. For each serie we used landcover classifications to extract areas 

defined as croplands and erased these areas from the most recent landcover layer serie 6. We 

then identified and remove barren, forest, and developed landcover types from serie 6.  

We used WWF hydroLAKES dataset to identify and erase water bodies >= 40 ac from 

our study area. Lastly, we used OpenStreetMap transportation dataset to identify roads and rails 

and erased these areas from our study area (www.openstreetmap.org). Tracks and trails were 

removed from the dataset, and major roads were buffered by 25 m and minor roads and rails 

were buffered by 15 m before erasing these regions from our study area. OpenStreetMap is an 

open source dataset built by a community of amateur to professional mappers using GPS, aerial 

imagery, or maps to add geospatial data to the OpenStreetMap database. Geofabrik processes 

these data using consistent and standardized methods, updates the datasets daily, and makes the 

data available for download as a shapefile (Ramm 2019; https://download.geofabrik.de/north-

america/mexico.html). See Appendix A for classification codes used in analysis.  

 

Supervised Classification 

Training Data 

Five indices were created from a 2016-2018 Sentinel-2 image collection within our study 

area. We processed each image in the collection by masking cloud cover using the cloud mask 

band. We then calculated a Normalized Difference Vegetation Index band (NDVI), a Red Edge 

Index (REI), and a day of year band that reflected the ordinal date the image was created. NDVI 

https://download.geofabrik.de/north-america/mexico.html
https://download.geofabrik.de/north-america/mexico.html
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and REI both measure greenness however the REI is less prone to saturation in areas that have 

high density biomass (Clevers 1994). We then created a median composite and a greenest pixel 

composite of the image collection. The median composite calculated the median value for each 

band per pixel. In the Prairie Habitat JV we truncated the three year dataset from April 1st to 

September 30th for each year to limit the effect of a prolonged winter on median image 

composites; we used the full three year dataset for the remaining JVs’ median composites and for 

all JVs’ greenest pixel composites. The greenest pixel composite used a per pixel ordering 

function based on the NDVI band, where the pixel with the highest NDVI value was selected 

along with its associated band values from that point in time. We derived peak NDVI and the 

ordinal date and REI associated with peak NDVI from the greenest pixel composite. We 

calculated the difference between median NDVI and peak NDVI as a measure of how green a 

pixel became. Lastly, we performed a Tasseled-Cap linear transform of the median composite 

bands that represented greenness, wetness, and brightness of the image (Kauth and Thomas 

1979).  

We created our own landcover class reference points to sample covariate data to use as 

training data for the model. Reference points were created by interpreting orthoimagery available 

through Google Earth Engine (DigitalGlobe, Google 2018). Reference points were labeled with 

the landcover class that made up the majority of a 10 m x 10 m area around the point with cover 

typically greater than ~50% of the area. Interpretation and placement was guided by the 

following geospatial data: the PUDL layer, 2017 AAFC ACI in Canada, 2011 NLCD in the US, 

INEGI serie 6 in Mexico, USDA Conservation Reserve Program data in the US (CRP; 

proprietary dataset), the Missouri Resource Assessment Partnership (MORAP) ecological 

systems classification datasets for Texas and Oklahoma (Elliott et al. 2014), false-color 
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composites of median and greenest pixel composites, and google street view when applicable. 

We considered areas disturbed grass if they were outside the PUDL layer and appeared to be 

grass. We considered areas potentially undisturbed grass if they were within the PUDL layer and 

appeared to be grass. We believed that there would be spectral differences between these two 

grass classifications based on common restoration and management practices, wherein restored 

grasslands are often seeded with similar low species diversity mixes containing non-natives and 

are generally left idle (CRP) or used for hay production or small grazing pastures. We considered 

an area open water if water were visible in both the median and greenest pixel composites, 

representing more permanent water bodies. We considered an area bare ground if it appeared 

completely devoid of vegetation. These regions were generally located in areas of bare rock, soil, 

or urban landcover/structures. We considered an area cropland if it appeared plowed and seeded. 

We considered an area forest if it contained tall trees, generally large textured and often casting a 

shadow, and an area shrub if it appeared small-rounded, textured, and often casting a minimal 

shadow.  

Models were constrained to areas that generally represented large ecoregions within each 

JV (CEC Level III ecoregions). Our methods were based in the assumption that phenology of 

green-up between native and non-native grasses would enable the identification of potentially 

disturbed vs. undisturbed lands (Olimb et al. 2017); however, these differences would be most 

meaningful in regions with similar soils and climates. Depending on how much the granule 

overlapped the model region, we selected 10-20 reference points per class in every other granule 

that covered the region. If we could not establish reference points for all classes in each sample 

granule we added points to other sample granules. An effort was made to space points out over a 

granule if possible. After the model was trained and applied with the balanced dataset we added 
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more training data in areas of obvious misclassification. In total we used 33,331 reference points, 

and 4,227 of those were points added in areas of misclassification (Table 4).  

Training data for the Rainwater Basin JV was established differently because they were 

able to supply reference points that were collected on the ground in 2017 and 2018 as part of an 

ongoing ecological systems mapping study (A. Bishop pers comm.). Reference points consisted 

of road-based samples that labeled the predominant landcover, the percent cover, and the top 

three species that composed the cover. We coded these species as native or non-native and each 

reference point was scored a value of 0-3 based on the number of dominant native species. We 

also coded each point that was collected within the PUDL layer. For potentially undisturbed 

grassland reference points we only selected points from 2018 (due to data collection disparities 

between the years for grassland landcover), that were collected within the PUDL layer, had a 

landcover layer of grassland or marsh, a native score of 3, and an herbaceous percentage of 76-

100. Disturbed grass reference points were selected using 2018 and some of 2017 data. For 2018 

data we selected points that were labeled grassland, marsh, grass farm, or CRP, that were outside 

the PUDL layer, had a native score of 0-1, and had an herbaceous percentage of 76-100. In 2017 

we selected similar points except we excluded grassland and marsh landcovers. We selected all 

urban and bare, and water landcover data for the developed/bare, and water reference points. We 

selected all crop, shrub, and forest landcover data as reference points if they had an 

herbaceous/shrub/tree percentage of 76-100. Reference points were visually inspected to ensure 

they aligned with our interpretation of aerial imagery. Crop, forest, and undisturbed grass had 

just over 400 data points each and were thinned to 400 through random selection. Water, 

developed/bare, shrub, and disturbed grass data points were considerably less (n=84, 30, 67, and 
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284, respectively) and reference points were added using aerial interpretation methods to reach 

400 points for each class.  

Model Tuning and Validation 

 After extracting covariate data at reference point locations we exported the data 

table and tuned the model using the randomForest package in R (R Core Team 2018, Liaw and 

Wiener 2002). We tested the optimal number of variables per split and number of trees that 

would balance computation time and accuracy. We let the variables per split range from 2-4, and 

the number trees range from 101-501 trees increasing by 100. For each combination we ran 100 

models and calculated the mean out-of-bag error. We selected the number of variables per split 

that produced lower error estimates over the range of trees, and we selected the number of trees 

when a 100 increase in the number of trees stopped improving the error rate by >=0.15%. 

Generally two variables per split and 301 trees were selected. We then set a seed that produced a 

similar out-of-bag error and reported the associated error matrix. Lastly, we trained the model in 

Google Earth Engine with the selected tuning variables, applied the model to the covariate 

images, and exported the landcover classification images for further processing in ArcGIS (i.e., 

clipping and mosaicking). 

 

Loss vs. Protection Estimates 

Loss rate estimates were calculated using different time-series datasets for each JV (Table 

A1). In Canada we derived landcover change estimates using 2011-2017 Agriculture Agri Foods 

Canada (AAFC) Annual Cropland Inventory (ACI). In the U.S. we used the 2008-2018 United 

States Department of Agriculture (USDA), National Agricultural Statistics Service (NASS) 

Cropland Data Layer (CDL; USDA NASS 2018). We also derived estimates using the periodic 
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landcover datasets, including AAFC Land Use  (LU; 1990, 2000, and 2010) in Canada, Multi-

resolution Land Characteristics (MRLC) Consortium National Land Cover Database (NLCD; 

2001, 2004, 2008, 2011, 2013, and 2016) in the U.S., and Instituto Nacional de Estadística y 

Geografía Uso del Suelo y Vegetación  (INEGI; 2002, 2007, 2011, and 2014) in Mexico.  

 We obtained loss rate estimates from times series landcover data by tracking total cover 

and undisturbed cover each year (Figures 7 & 8). Total cover represented the total amount of 

grass, shrub, and wetland cover present in each year regardless of its disturbance history. 

Undisturbed cover represented the amount of undisturbed grass, shrub, and wetland cover 

present each year (i.e., tracking the amount of undisturbed cover over time). To do this we first 

calculated the total amount of grass, shrub, and wetland cover in the start year, and then 

recalculated the amount of cover remaining after masking/erasing any pixels/polygons that were 

classified as crop or developed each following year. Note that if an undisturbed pixel was 

reclassified as bare, water, or forest it would not be removed. 

 Prior to making any calculations or masking any layers in the U.S. or Canada we used a 

5x5 pixel moving window on the 30m resolution landcover layers to remove any small isolated 

classifications of crop or grass (Wright and Wimberly 2013). These areas often have a ‘salt-and-

pepper’ appearance and are caused by misclassification and model uncertainly. Smoothing the 

images helped reduce the noise in estimating rates of loss due to misclassification of crop or 

grass. 

We then used log linear regression to obtain the annual rates of change for total cover, 

undisturbed cover, and all data points (i.e., a rate that lies between the change in total cover and 

undisturbed cover) within each JV. We did this because total change is an underestimate of loss 

that does not track those parcels that were cropped and then restored to grass, and undisturbed 
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change is an over-estimate of loss because areas of crop misclassification within potentially 

undisturbed grass/shrub/wetland regions are accumulated over time; therefore, a rate of change 

between total cover and undisturbed cover is a more reasonable estimate.  

 Habitat conservation takes many forms, but long-term protection is not only arguably the 

best long-term investment, it can also be quantified across large landscapes using existing spatial 

datasets. Protection rate estimates were calculated using different vector datasets for each 

country that catalogued protected area boundaries and their attributes (Table A1). In the US we 

used the Protected Area Database of the United States (PADUS; USGS GAP 2018), in Canada 

we used the Conservation Area Reporting and Tracking System (CARTS; Vanderkam 2017), 

and in Mexico we used the World Database of Protected Areas (WDPA; UNEP-

WCMC and IUCN 2018). These datasets include both fee-title and long-term easement data. 

Note that these are not comprehensive databases. For example, In the U.S. the PADUS dataset is 

estimated to include 95% of federal lands, and 60% of state, regional, local, and other preserved 

lands. Each dataset contains the type of protected area and the year of establishment. We only 

considered an area protected if it was attributed an IUCN category 1-6 (this aligns with GAP 

status codes 1 and 2 in the PADUS dataset). Only using IUCN category lands removed roughly 

half of the lands included in the PADUS and WDPA datasets; these lands were protected but 

prone to some development. For example, in the US the, State Board Lands represent a large 

majority of protected areas, but these lands are also open to cropping and mineral extraction so 

they were not included.  

We calculated the percentage of PUDL protected and a recent 10-year average annual 

rate of protection for each JV. We calculated the percentage of the PUDL layer already in a 

protected status by clipping the protected lands layers with the PUDL layer for each JV. We 
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calculated rates of protection using data from 2005-2014 in the US, from 2006-2015 in Canada, 

and from 2008-2017 in Mexico. Note that protection was temporally and spatially variable. For 

example in Canada we estimated a recent annual average protection effort of ~6,000 acres per 

year, however a 10-year average annual protection rate from 1996-2005 was calculated as 

~74,000 acres per year. Lastly, we used these data to construct figures that depict the change in 

the PUDL layer projected into the future given estimated rates of loss and protection. See 

Appendix B for a list of landcover codes used to process the landcover data to derive loss rates 

estimates, as well as google earth engine code. 
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Table A1. Datasets used for analysis showing the dataset, acronyms, producer(s), year(s), use, description, and reference.  

 

Dataset - Producer - Dates Use Description Reference 

Common Land Unit 

(CLU) -- United States 

Department of Agriculture 

(USDA), Farm Service 

Agency (FSA) -- 2008-2011 

& 2013-2018 

Used to identify 

disturbed lands in the 

US for the PUDL layer 

A time-series vector dataset where a common land unit 

is defined as the smallest unit of land that has a 

boundary, and a common land use, owner, and producer 

association. CLU was first established in 1998 and in 

some regions has incorporated spatial data dating back 

to 1956 via the Soil Bank program (i.e., paper maps). 

The FSA continually updates the CLU dataset by 

spatially delineating land units that have participated in 

USDA programs. CLU spatial delineation is 

accomplished using heads-up-digitization of 

orthophotography in a Geographic Information System 

(GIS). CLU parcels are associated with a table of 

attributes; a landcover attribute field indicated landcover 

classification and a field called 3_CM was added in 

2012, which indicates if a parcel has ever had a cropping 

history despite its current cover. 

FSA 2014 

National Land Cover 

Database (NLCD) -- Multi-

Resolution Land 

Characteristics Consortium 

-- 2001, 2004, 2008, 2011, 

2013, and 2016 

2011 was used to 

identify bare, 

developed, and 

forested lands in the 

US for the PUDL 

layer. All years were 

used for grassland loss 

estimates in the US. 

The NLCD is created by a partnership of federal 

agencies called the Multi-Resolution Land 

Characteristics Consortium. It is a 30 m resolution raster 

depicting broad landcover types that were classified 

using decision tree methods and Landsat imagery. 

Homer et al. 2015 

National Hydrologic 

Dataset (NHD) -- United 

States Geological Survey 

(USGS) 

Used to remove large 

wetlands in the US for 

the PUDL layer. 

NHD is a vector dataset that contains waterbodies 

mapped at a 1:24,000 scale or better. The dataset is 

updated and maintained through partnerships with state 

and collaborative bodies. 

McKay et al. 2012 
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TIGER/Line -- U.S. 

Census Bureau 

Used to remove roads 

and rails in the US for 

the PUDL layer. 

Geospatial extracts from the U.S. Census Bureau’s 

Master Address File/Topologically Integrated 

Geographic Encoding and Referencing database 

(MAF/TIGER). TIGER/Line shapefiles contain 

nationwide street centerline geospatial data in vector 

format. It was first released in 1989 and derived from 

United States Geologic Survey (USGS) Digital Line 

Graph (1:1,000,000-scale) and has been continually 

updated since then using data provided by partners from 

local, state, and federal governments. 

TIGER/Line 2017 

Land Use (LU) -- 

Agriculture Agri Foods 

Canada (AAFC) -- 1990, 

2000, ad 2010 

All years were used to 

identify disturbed 

lands in Canada for the 

PUDL layer and 

estimate grassland loss 

rates. 

AAFC LU datasets are 30m landcover raster created 

using multiple data sources and a “preponderance of 

evidence” set of rules. It was created for all of Canada 

south of 60 degrees N and has overall accuracy 

assessment of  89.1%, 90.6%, and 94.7% for 1990, 

2000, and 2010, respectively (if water and wetland 

classes are grouped together). 

Download 

Annual Crop Inventory 

(ACI) -- AAFC -- 2011-

2017 

All years were used to 

identify disturbed 

lands in Canada for the 

PUDL layer, and 2017 

was used to identify 

and remove bare, 

developed, and 

forested areas. All 

years were used to 

estimate grassland loss 

rates.  

AAFC ACI datasets are 30m rasters created using 

remote sensing data, training and testing data, and 

decision tree based classification methods. Radar data 

came from RADARSAT-2 (2011-2017), and optical 

data came from Landsat 5 (2011-2012), Landsat 8 

(2013-2017), Sentinel-2 (2016-2017), and Gaofen-1 

(2016-2017). These methods have produced overall 

accuracy for 2011-2017 cropland classes >= 85%.  

Download 

https://open.canada.ca/data/en/dataset/18e3ef1a-497c-40c6-8326-aac1a34a0dec
https://open.canada.ca/data/en/dataset/%20ba2645d5-4458-414d-b196-6303ac06c1c9
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hydroLAKES -- World 

Wildlife Fund 

Used to remove large 

wetlands in Canada 

and Mexico for the 

PUDL layer. 

This is a global database that maps open water >= 10 ha 

as polygons. Sources to create this database vary by 

location. In Canada the dataset is produced from 

Canadian hydrographic dataset (CanVec; 1:50,000 scale, 

Natural Resources Canada 2013), Shuttle Radar 
Topographic Mission Water Body Data (1 arc-second 

raster, Slater et al. 2006), Global Lakes and Wetlands 

Database (1:1 million scale or better, Lehner and Doll 

2004), Global Reservoir and Dam database (1:1 million 

scale or better, Lehner et al. 2011), and World Wildlife 

Fund mapping 1:1 million scale or better).  

Messaner et al. 2018 

National Road Network 

(NRN) -- Inter-Agency 

Committee on Geomatics  

Used to remove roads 

and rails in Canada for 

the PUDL layer. 

Prior to erasing these areas we buffered major roads by 

25 m, and minor roads and rails by 15 m. The National 

Road and Rail Network databases are produced through 

intergovernmental partnerships that provide data updates 

at least once a year using a homogenous and 

standardized approach to represent centerline road 

phenomena at an approximate resolution of 1:10,000. 

Download  

Uso de suelo y vegetación 

(INEGI) -- Instituto 

Nacional de Estadística y 

Geografía -- 2002, 2007, 

2011, 2014 

All years were used to 

identify disturbed 

lands in Mexiso for the 

PUDL layer, and 2014 

was used to identify 

and remove bare, 

developed, and 

forested areas. All 

years were used to 

estimate grassland loss 

rates.  

INEGI uso de suelo y vegetation time-series landcover 

datasets, serie 3-6  are vector data produced from remote 

sensing imagery at a 1:250,000 scale. Serie 3-6 were 

produced using Landsat imagery from the following 

sensors and years: serie 3 used Landsat 7 ETM+ 

imagery from 2002, serie 4 used Landsat 5 imagery from 

2007, serie 5 used Landsat 5 imagery from 2011, and 

serie 6 used Landsat 8 imagery from 2014. 

(INEGI 2005, 2009, 

2013, and 2016) 

http://ftp.maps.canada.ca/pub/nrcan_rncan/vector/geobase_nrn_rrn/
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OpenStreetMap (OSM) 

Used to remove roads 

and rails in Canada for 

the PUDL layer. 

OpenStreetMap is an open source dataset built by a 

community of amateur to professional mappers using 

GPS, aerial imagery, or maps to add geospatial data to 

the OpenStreetMap database. Geofabrik processes these 

data using consistent and standardized methods, updates 

the datasets daily, and makes the data available for 

download as a shapefile (Ramm 2019; 

https://download.geofabrik.de/north-

america/mexico.html). 

www.openstreetmap.org 

Cropland Data Layer 

(CDL) -- USDA, National 

Agricultural Survey 

Statistics (NASS) -- 2008-

2018 

All years were used to 

estimate grassland loss 

rates in the US. 

Cropland Data Layer is produced at a 30 m resolution 

using Landsat imagery, training and testing data, and 

decision tree classification methods. 

USDA NASS 2018 

Conservation Areas 

Tracking System 

(CARTS) -- Canadian 

Council on Ecological 

Areas  

Used to determine 

protected PUDL in 

Canada, and estimate 

10-year average annual 

protection (2006-2015) 

Vector dataset that catalogues protected area boundaries 

and their attributes such as type of protected area 

(federal, state, non-government, private, etc.) and the 

year of establishment. 

Vanderkam 2017 

Protected Area Database 

of the United States 

(PADUS) -- USGS 

Used to determine 

protected PUDL in the 

US, and estimate 10-

year average annual 

protection (2005-2014) 

Vector dataset that catalogues protected area boundaries 

and their attributes such as type of protected area 

(federal, state, non-government, private, etc.) and the 

year of establishment. 

USGS GAP 2018 

https://download.geofabrik.de/north-america/mexico.html
https://download.geofabrik.de/north-america/mexico.html
https://download.geofabrik.de/north-america/mexico.html
https://download.geofabrik.de/north-america/mexico.html
https://download.geofabrik.de/north-america/mexico.html
https://download.geofabrik.de/north-america/mexico.html
https://download.geofabrik.de/north-america/mexico.html
https://download.geofabrik.de/north-america/mexico.html
https://download.geofabrik.de/north-america/mexico.html
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World Database on 

Protected Areas (WDPA) -

- United Nations 

Environment Programme 

(UNEP), International 

Union for Conservation of 

Nature (IUCN),  UNEP 

World Conservation 

Monitoring Centre (UNEP-

WCMC) 

Used to determine 

protected PUDL in 
Mexico, and estimate 

10-year average annual 

protection (2008-2017) 

Vector dataset that catalogues protected area boundaries 

and their attributes such as type of protected area 

(federal, state, non-government, private, etc.) and the 

year of establishment. 

UNEP-

WCMC and IUCN 2018 

Sentinel-2 Level-1C -- 

European Union Copernicus 

Program -- 2016-2018 

Used for supervised 

classification across all 

regions. 

Sentinel-2 is an earth observation mission that is part of 

the European Union Copernicus Program that collects 

orthoimagery by twin satellites. Level-1C products 

represent Top-of-the-Atmosphere reflectance in 

cartographic geometry. Images contain 13 bands 

including red, green, blue, and near infrared bands at 

10m resolution, four red edge bands and two short-wave 

infrared bands at 20m resolution, and three bands that 

represent atmospheric quality at a 60m resolution. The 

satellites generate 100km2 wide swath images with an 

approximate 5 day cadence. 

  

Multi-scale Topographic 

Index (MTPI) 

Used for supervised 

classification across all 

regions. 

MTPI is 270 m resolution index of topographic position 

derived from 30 m resolution Shuttle Radar Topography 

Mission digital elevation data (Theobald et al. 2015). 

Values range from negative (valleys) to positive 

(ridges).  

Theobald et al. 2015 

 

 

 

 



 

64 
 

 

Appendix B: Workflow and Programming Code 

PUDL Deductive Workflow 

US –  

Erased each year (2008-2011, 2013-2017) of clu classification code 3 and crop indicator code 

(3CM) 1 (starting in 2013) from the study extent polygon.  

Extracted bare (code 31), developed (code 21-24), and forest (code 41-43) from NLCD 2011, 

converted to polygon, erased from extent.  

Erased all NHD wetlands > 40 AC from the extent.  

Buffered tiger dataset by 25 m for highways (mcff S1100, S1200), and 15 m for local roads 

(mcff S1400, S1630, S1640, S1720, S1730, S1740 S1750, S1780, ) and rails, and then erased 

from the extent. Did not include tracks and trails (S1710, S1820, S1830).  

CAN- 

Used AAFC LU (1990, 2000, 2010, code 51) and ACI (2011-2017, codes 120 OR >= 130 AND 

<=199) to create a masking layer and masked crop from CI2017.  

Then removed developed (code 34 and 35), bare (code 30), and forest (codes 200-230), and 

converted the raster to polygon.  

Used WWF lakes >= 40 AC to remove large bodies of water.  

Buffered the national road/rail network by 25 m (freeway, expressway/highway, arterial, rapid 

transit) and 15 m (rails, collector, local/street, local/strata, local/unknown, alleyway/lane, ramp, 

resource/recreation, service lane) and erased. Did not include winter roads. 

MEX – RGJV 

Removed crop from serie 6 (codes HA, RA, RAP RAS RP, RS, RSP, TA, TAP, TAS TP, TS), 

and erased serie 3, 4, and 5 crop from serie 6.  

Removed bare (ADV, DV), developed (AH, ZU), foreign (P/E), and forest (BC, BS, BQ, BQP, 

BG, MK, BA BP, BPQ, BJ, BI, BM, VM, MKE, VPI, VPN, VSI, SBC, SBK, SG, SMS,  SMQ, 

VSA/BS, VSA/BQ, VSA/BQP, VSA/MK, VSA/BP, VSA/BPQ, VSA/BM, VSA/VM, 

VSA/VPN, VSA/SBC, VSA/SBK, VSA/SBS, VSA/SMS, VSA/SMQ) from serie 6.  

Removed WWF water greater than 40 AC. 
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Buffered OpenStreetMap major roads (5111 to 5115) by 25 m, and minor roads (5121 to 5144 

and 5199) buffered by 15m and erased from serie 6. Tracks and trails were removed. 

Loss Vs. Protection Landcover Codes 

LU: 

Cropland + developed codes: 21, 25, 51 

Grass + shrub + wetland codes: 61, 62, 71, 73, 74 

ACI: 

Cropland + developed codes: 120, >=130 & <=199, 34, 35 

Grass + shrub + wetland codes: 110, 122, 50, 80 

CDL: 

Cropland + developed codes: >=1&<=36, >=38&<=61,>=66&<=77, >=121&<=124, 

>=204&<=254 

Grass + shrub + wetland codes: 176, 37, 64, 152, 87, 190, 195,  

NLCD: 

Cropland + developed codes: 82, >=21&<=24 

Grass + shrub + wetland codes: 71, 81, 52, 90, 95 

INEGI serie 5 and 6: 

Cropland + developed codes:  AH, ZU, HA, RA, RAP, RAS, RP, RS, RSP, TA, TAP, TAS, TP, 

TS 

Grass + shrub + wetland codes: MC, MDM, MDR, MK, MKE, MKX, ML, MRC, MSC, MSCC, 

MSN, MST, PC, PH, PI, PN, VD, VG, VH, VHH, VSa/BB, VSa/BG, VSa/BJ, VSa/BP, 

VSa/BPQ, VSa/BQ, VSa/BQP, VSa/MC, VSa/MDM, VSa/MDR, VSa/MK, VSa/MKE, 

VSa/MKX, VSa/ML, VSa/MRC, VSa/MSC, VSa/MSCC, VSa/MSN, VSa/MST, VSa/PN, 

VSa/SBC, VSa/SBK, VSa/SMS, VSa/VD, VSa/VG, VSa/VH, VSa/VHH, VSa/VM, VSa/VPN, 

VSh/BJ, VSh/BP, VSh/BPQ, VSh/BQ, VSh/BQP, VSh/MDM, VSh/MRC, VSh/MSCC, 

VSh/MSN, VSh/SBC, VSh/SMS, VSh/VH, VSh/VM, VT, VU, PY, VY, VSh/MDR, VSh/MET, 

VSh/PN, MC, MET, MSM, VSa/VU, VSa/BS, VSa/MET, VSa/MSM, VSa/PY, VSa/PH 

INEGI serie 3 and 4: 
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Cropland + developed codes:  10101010304, 10101040103, 10101040104, 10102010304, 

10102040102, 10102040103, 10102040104, 10102040203, 10102040204, 10103040104, 

30000000032, 30000000033 

Grass + shrub + wetland codes: 10201040304, 20803010400, 20802010400, 21302030300, 

20807070400, 21102010400, 20903010400, 20902010400, 20202020700, 20104020700, 

20105020700, 20904020700, 20911020700, 20801020700, 20602020700, 20902020700, 

20913030400, 20906010400, 20107010400, 20904010400, 20905010400, 20911010400, 

20912010400, 20914010400, 20901010400, 20101020600, 20201020600, 20202020600, 

21002020600, 21101020600, 20104020600, 20105020600 

20106020600, 20913030600, 20906020600, 20904020600, 20905020600, 20911020600, 

20912020600, 20914020600, 20803020600, 20802020600, 20801020600, 20602020600, 

20701020600, 20901010600, 20902020600, 21007030400, 21005010400, 21009010400, 

21005020600, 21009020600, 10201040304 , 20201020700 ,20501020700, 20908020700, 

20909020700, 20910020700, 21003020700, 20102020600, 20501020600, 20603010400, 

20603020600, 20703020600, 20907010400, 20907020600, 20908010400, 20908020600, 

20909010400, 20909020600, 20910010400, 20910020600, 21003020600, 21103020600, 

21006030400 

Supervised Classification Training Data Indices 

Red Edge Index 

https://www.indexdatabase.de/db/si-single.php?sensor_id=96&rsindex_id=252) 

Tasselled Cap Indices 

https://www.indexdatabase.de/db/si-single.php?sensor_id=96&rsindex_id=564, 

https://www.indexdatabase.de/db/si-single.php?sensor_id=96&rsindex_id=91, 

https://www.indexdatabase.de/db/si-single.php?sensor_id=96&rsindex_id=93 

Google Earth Engine Code 

Estimating Loss Rates 

CDL-US 

https://code.earthengine.google.com/b60c6af4d203ea7b37e35319e12812eb 

NLCD - US 

https://code.earthengine.google.com/f2bdc8c27f1a28ef3282e9b4aee43cc1 

LU and ACI – Canada 

https://www.indexdatabase.de/db/si-single.php?sensor_id=96&rsindex_id=252
https://www.indexdatabase.de/db/si-single.php?sensor_id=96&rsindex_id=564
https://www.indexdatabase.de/db/si-single.php?sensor_id=96&rsindex_id=91
https://www.indexdatabase.de/db/si-single.php?sensor_id=96&rsindex_id=93
https://code.earthengine.google.com/b60c6af4d203ea7b37e35319e12812eb
https://code.earthengine.google.com/f2bdc8c27f1a28ef3282e9b4aee43cc1
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https://code.earthengine.google.com/f57f08ba636103b1d663bbb04706d994 

Supervised Classification 

NGPJV_NorthernGreatPlains_East 

https://code.earthengine.google.com/2e1bff2b274abdb7bbfd3aa271e57e3c 

NGPJV_NorthernGreatPlains_West 

https://code.earthengine.google.com/e4fe5ab9a362cb901391c788384a7748 

OPJV_BlacklandPrairie 

https://code.earthengine.google.com/4b9220ea30a44d95479a15669b41c673 

OPJV_Crosstimber 

https://code.earthengine.google.com/4b9220ea30a44d95479a15669b41c673 

OPJV_EdwardsPlateau 

https://code.earthengine.google.com/a935406624303c7a777cbefd79e8f81b 

PHJV_AspenParklands 

https://code.earthengine.google.com/f9c70ad5ebe1d5f0f36e173daac88282 

PHJV_MidBorealParklands 

https://code.earthengine.google.com/b54d69a06f8362d99b0cfd75e2bd868b 

PHJV_MidBorealUplands 

https://code.earthengine.google.com/38ef1337dc16302fb970927958b5b69d 

PHJV_NWGlaciatedPlains 

https://code.earthengine.google.com/9a5cccdaff99b11c78ae7c88901eb3fc 

PLJV_CentralGreatPlains 

https://code.earthengine.google.com/f834ba7f095e04937c4c701c9c0ed0e1 

PLJV_HighPlainsTableLands_North 

https://code.earthengine.google.com/3fc5bf4bc683e71c05510c2d2acf40e2 

https://code.earthengine.google.com/f57f08ba636103b1d663bbb04706d994
https://code.earthengine.google.com/2e1bff2b274abdb7bbfd3aa271e57e3c
https://code.earthengine.google.com/e4fe5ab9a362cb901391c788384a7748
https://code.earthengine.google.com/4b9220ea30a44d95479a15669b41c673
https://code.earthengine.google.com/4b9220ea30a44d95479a15669b41c673
https://code.earthengine.google.com/a935406624303c7a777cbefd79e8f81b
https://code.earthengine.google.com/f9c70ad5ebe1d5f0f36e173daac88282
https://code.earthengine.google.com/b54d69a06f8362d99b0cfd75e2bd868b
https://code.earthengine.google.com/38ef1337dc16302fb970927958b5b69d
https://code.earthengine.google.com/9a5cccdaff99b11c78ae7c88901eb3fc
https://code.earthengine.google.com/f834ba7f095e04937c4c701c9c0ed0e1
https://code.earthengine.google.com/3fc5bf4bc683e71c05510c2d2acf40e2


 

68 
 

PLJV_HighPlainsTableLands_South 

https://code.earthengine.google.com/ab1edb680fc26fcd2d423256c386e605 

PPJV_AgassizPlains 

https://code.earthengine.google.com/abb89717deddfbc98cc18149d8190bf5 

PPJV_GlaciatedPlains 

https://code.earthengine.google.com/fa25b72f4e078479bae2bd82887d5cca 

PPJV_NWGlaciatedPlains 

https://code.earthengine.google.com/e3783c7b629b3a313fb907bab65a1e88 

PPJV_WesternCornBelt 

https://code.earthengine.google.com/e2b6b430d179f9a0bf6f9581f19a5969 

RBJV_Rainwaterbasin 

https://code.earthengine.google.com/1a633972d801922e8bcd8bd5ed4a0ce9 

RGJV_ChihuahuanGrasslands_North 

https://code.earthengine.google.com/b6575f9dcd0f9e6429a7c9365be87501 

RGJV_ChihuahuanGrasslands_South 

https://code.earthengine.google.com/dcdb1082bb1bf8fafac2aa83320c7023 

RGJV_InteriorPlainsXeroScrub 

https://code.earthengine.google.com/c51fd428cb4b7f84d8981bdd37114fef 
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https://code.earthengine.google.com/fa25b72f4e078479bae2bd82887d5cca
https://code.earthengine.google.com/e3783c7b629b3a313fb907bab65a1e88
https://code.earthengine.google.com/e2b6b430d179f9a0bf6f9581f19a5969
https://code.earthengine.google.com/1a633972d801922e8bcd8bd5ed4a0ce9
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