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ABSTRACT Industrial wind energy production is a relatively new phenomenon in the Prairie Pothole
Region and given the predicted future development, it has the potential to affect large land areas. The effects
of wind energy development on breeding duck pair use of wetlands in proximity to wind turbines were
unknown. During springs 20082010, we conducted surveys of breeding duck pairs for 5 species of dabbling
ducks in 2 wind energy production sites (wind) and 2 paired reference sites (reference) without wind energy
development located in the Missouri Coteau of North Dakota and South Dakota, USA. We conducted
10,338 wetland visits and observed 15,760 breeding duck pairs. Estimated densities of duck pairs on wetlands
in wind sites were lower for 26 of 30 site, species, and year combinations and of these 16 had 95% credible
intervals that did not overlap zero and resulted in a 4-56% reduction in breeding pairs. The negative median
displacement observed in this study (21%) may influence the prioritization of grassland and wetland resources
for conservation when existing decision support tools based on breeding-pair density are used. However, for
the 2 wind study sites, priority was not reduced. We were unable to directly assess the potential for cumulative
impacts and recommend long-term, large-scale waterfowl studies to reduce the uncertainty related to effects
of broad-scale wind energy development on both abundance and demographic rates of breeding duck
populations. In addition, continued dialogue between waterfowl conservation groups and wind energy
developers is necessary to develop conservation strategies to mitigate potential negative effects of wind
energy development on duck populations. © Published 2012. This article is a U.S. Government work and is
in the public domain in the USA.
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Millions of glaciated wetlands and expansive grasslands make
the Prairie Pothole Region (PPR) the primary breeding area
for North America’s upland nesting ducks (Batt et al. 1989).
Wetland and grassland loss in the PPR due to settlement and
agriculture has been extensive (Dahl 1990, Mac et al. 1998),
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and conversion to agriculture continues to reduce available
habitat for breeding waterfowl and other wetland- and grass-
land-dependent birds (Oslund et al. 2010, Claassen et al.
2011). During recent years, anthropogenic impacts in
the PPR have expanded to include energy development
(e.g., wind, oil, natural gas; see Copeland et al. 2011:
table 2.1). From 2002 to 2011, industrial wind energy
production has increased 1,158% (i.e., 769-9,670 MW),
205% during the past 5 years (United States Department
of Energy [USDOE] 2011). Impacts from wind energy
development including direct mortality from strikes and
avoidance of wind towers and associated infrastructure
have been widely documented for many avian species, in-
cluding raptors, passerines, upland gamebirds, shorebirds,
and waterfowl, as well as bats (Drewitt and Langston

2006; Arnett et al. 2007, 2008; Kuvlesky et al. 2007).
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Wetland habitats in the PPR annually attract and support
>50% of the breeding waterfowl population in North
America (Bellrose 1980). The productivity and subsequent
use of prairie wetlands by breeding ducks in the PPR are
critical for the maintenance of continental duck populations
(Batt et al. 1989, van der Valk 1989). Because of the potential
for extensive wind energy development (USDOE 2008,
2011, Kiesecker et al. 2011), understanding the potential
effect of wind power development on the use of wetland
habitat by breeding duck pairs in the region is critical.

The potential impacts of wind energy development on
breeding ducks are similar to other wildlife reviewed in
Kuvlesky et al. (2007). Breeding pairs may abandon other-
wise suitable wetland habitat, display behavioral avoidance
thereby reducing densities of pairs using wetlands near wind
turbines, and experience mortality from collision with tur-
bines and associated infrastructure. Additionally, indirect
effects on breeding ducks potentially include avoidance of
associated grassland by nesting females, increased predation,
or reduced reproduction. Wind towers and supporting in-
frastructure generally do not directly affect the wetlands
that provide habitat for breeding ducks. However, ducks
are sensitive to many forms of disturbance (Dahlgren and
Korschgen 1992, Madsen 1995, Larsen and Madsen 2000).
Avoidance related to the presence of towers, movement
of blades (e.g., shadow flicker), blade noise (Habib et al.
2007), infrastructure development including roads and trans-
mission lines (Forman and Alexander 1998, Ingelfinger and
Anderson 2004, Reijnen and Foppen 2006), and mainte-
nance activities have been documented for other avian species
and may similarly affect breeding pairs and reduce the use of
wetlands within and adjacent to wind farms.

The presence of wind energy development in high density
wetland and breeding pair habitat in the PPR is relatively
recent, and previous studies of the effects of land-based wind
development on waterfowl (4natidae) have focused primarily
on collision mortality (Winkelman 1990, Johnson et al.
2000, Gue 2012) and the effect of wind farms on foraging
behavior of wintering and migrating waterfowl (Winkelman
1990, Larsen and Madsen 2000, Drewitt and Langston
2006, Kuvlesky et al. 2007, Stewart et al. 2007). Wind
development appears to cause displacement of wintering
or migrating Anseriformes, and bird abundance may decrease
over time (Stewart et al. 2007). However, habituation has
been reported for foraging pink-footed geese (Anser brachyr-
hynchos) during winter (Madsen and Boertmann 2008).
Displacement of duck pairs due to wind development could
affect population dynamics similar to habitat loss (Drewitt
and Langston 2006, Kuvlesky et al. 2007). However, little
information exists on how land-based wind development
affects the settling patterns, distribution, and density of
duck pairs during the breeding season.

The number and distribution of breeding duck pairs in the
PPR is related to annual wetland and upland conditions
(Johnson et al. 1992; Austin 2002; Reynolds et al. 2006,
2007; U.S. Fish and Wildlife Service [USFWS] 2012).
Wetland conditions in the PPR vary both spatially and
temporally (Niemuth et al. 2010) and during dry years in

the PPR, waterfowl are displaced to lesser quality habitats
farther north (USFWS 2012) where productivity is generally
reduced (Bellrose 1980). The long-term sustainability of
breeding duck populations is dependent on availability
and use of productive wetlands in the PPR that provide local
breeding pair habitat when they are wet (Johnson and Grier
1988). Avoidance of wetlands near wind energy development
by breeding ducks on otherwise suitable wetland habitat may
result in displacement to lesser quality habitats similar to
the effect of displacement during dry years. Given the rela-
tively large development footprint (i.e., unit area/GW) for
energy produced from wind relative to other energy sources
such as coal (e.g., 7.4 times; wind = 72.1 ka/TW—hr/yr,
coal = 9.7 kmz/TW—hr/yr; McDonald et al. 2009) and the
projected growth of the industry (USDOE 2008), a relatively
large land area and subsequently a large number of wetlands
and associated duck pairs in the PPR can potentially be
affected.

We assessed the potential effects of wind energy develop-
ment and operation on the density of 5 common species
of breeding ducks in the PPR of North Dakota and South
Dakota: blue-winged teal (Anas discors), gadwall (4. strepera),
mallard (4. platyrhynchos), northern pintail (4. acura), and
northern shoveler (4. clypeata). Our objective was to deter-
mine whether the expected density of breeding duck pairs
differed between wetlands located within land-based wind
energy production sites (hereafter wind sites) and wetlands
located within paired sites of similar wetland and upland
composition without wind development (hereafter reference
sites). We predicted that if disturbance due to wind energy
development caused avoidance of wetlands by breeding duck
pairs, then expected density of breeding pairs would be
lower on wind energy development sites. We interpreted
differences in estimated breeding pair densities between
paired wind energy development sites and reference sites
in the context of the current Prairie Pothole Joint Venture
(PPJV) waterfowl conservation strategy for the United States
PPR (Ringelman 2005).

STUDY AREA

We selected operational wind energy and paired reference
sites as a function of the geographic location, the local
wetland community and its potential to attract breeding
pairs (i.e., >40 pairs/kmz; Reynolds et al. 2006), and wetland
conditions. In 2008, 11 wind farms were operational in the
PPR of North and South Dakota, USA. Of those, only 3
were located in areas with the potential to attract relatively
large numbers of breeding duck pairs for the 5 species in this
study (Loesch et al. 2012, OpenEnergylnfo 2012). We
identified 2 existing wind energy production sites in the
Missouri Coteau physiographic region (Bluemle 1991) of
south-central North Dakota, USA, and north-central South
Dakota, USA (Fig. 1). Both wind sites contained wetland
communities with the potential to attract an estimated 46
breeding duck pairs/km” (mean density = 8.5 pairs/km? for
the PPR; Reynolds et al. 2006, Loesch et al. 2012). The
Kulm-Edgeley (KE) wind energy development consisted of

41 towers in a cropland-dominated landscape (e.g., 83% of
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Figure 1. Paired study sites with and without wind energy development
surveyed for breeding waterfowl pairs in North Dakota and South Dakota,
USA, 2008-2010.

uplands were cropland; Table 1) and was located 3.2 km east
of Kulm, North Dakota, USA. The Tatanka (TAT) wind
energy development, consisted of 120 towers in a perennial
cover-dominated landscape (e.g., 92% of uplands were pe-
rennial cover; native grassland, idle planted tame grass, alfalfa
hay; Table 1) and was located 9.7 km northeast of Long
Lake, South Dakota, USA. The KE site began operation in
2003; approximately 50% of the TAT towers were opera-
tional by 28 April 2008 and all were operational by 21

May 2008. Turbine locations were on-screen digitized using

ESRI ArcGIS 9.2 software (ArcGIS Version 9.2,
Environmental Systems Research Institute, Redlands, CA)
and United States Department of Agriculture National
Aerial Imagery Program (NAIP) imagery (ca. 2007).

The potential zone of influence for breeding waterfowl
from a wind turbine to a wetland during the breeding season
is unknown. The limited research that has been conducted to
measure displacement of birds in grassland landscapes has
primarily targeted migratory grassland passerines, and has
identified relatively short (e.g., 80—400 m) distances (Leddy
et al. 1999, Johnson et al. 2000, Shaffer and Johnson 2008,
Pearce-Higgins et al. 2009). Compared to grassland passer-
ines, waterfowl have relatively large breeding territories and
mallards use multiple wetlands within their home range (e.g.,
10.36 km? generalized to a circle based on a 1,608 m radius;
Cowardin et al. 1988). Because the objective of this study was
to test the potential effects of wind energy development on
breeding duck pair density and not to identify a potential
zone of influence, we chose a buffer size with the objective to
spatially position sample wetlands in proximity to 1 or many
turbines where a potential effect of wind energy development
would likely be measurable. Consequently, we used the
generalized home range of a mallard hen and buffered
each wind turbine by 804 m (i.e., half the radius of a circular
mallard home range; Cowardin et al. 1988), to ensure overlap
of breeding territories with nearby wind turbines. The wind
sites contained different numbers of turbines and as a result
the sites were not equally sized (KE wind site = 2,893 ha;
TAT wind site = 6,875 ha; Fig. 1).

We derived wetland boundaries from digital USFWS
National Wetlands Inventory (NWI) data. We post-proc-
essed NWI wetlands to a basin classification (Cowardin et al.
1995, Johnson and Higgins 1997) where we combined com-
plex wetlands (i.e., multiple polygons describing a basin) into
a single basin and then classified them to the most permanent
water regime (Cowardin et al. 1979). Wetlands partially or
completely within the buffer areas were considered treatment
wetlands.

For each of the 2 wind sites, we employed a rule-based
process to select paired sites to control for differences in
wetland and landscape characteristics among sites. We first

Table 1. Characteristics of wetland (i.e., number, area [ha], % of total wetland area) and upland (i.e., area [ha], % of total upland area) areas in development
(wind) and paired reference sites in North Dakota and South Dakota, USA, where we surveyed wetlands for breeding duck pairs during spring 2008, 2009, and

2010. Sites included Kulm-Edgely (KE) and Tatanka (TAT) Wind Farms.

KE wind KE reference TAT wind TAT reference

Class Number Area % Number Area % Number Area % Number Area %
Wetland

Temporary 272 414 9 283 41.7 7 362 29.9 3 462 97.3 8

Seasonal 372 167.2 37 240 347.3 55 917 253.5 29 815 419.9 36

Semi-permanent 37 239.5 53 37 242.9 38 322 581.7 67 231 636.5 55

Total 681 448.1 560 631.9 1,601 865.0 1,508 1,153.7
Upland

Perennial cover® 416.3 16 1,324.4 37 5,428.4 92 6,039.7 85

Cropland 2,120.5 83 2,232.8 63 455.3 8 1,064.1 15

Other 6.6 <1 13.4 <1 18.3 <1 11.4 <1

Total 2,543 3,570.6 5,902.1 7,115.2

* Includes native grassland, undisturbed grassland, and alfalfa hay landcover classes.
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considered physiographic region and proximity to wind sites
when identifying potential reference sites. To reduce the
potential for environmental variation, especially wetness
(Niemuth et al. 2010), between wind and reference sites,
we only considered sites <25 km from the nearest turbine
and within the Missouri Coteau physiographic region.
Additionally, we assumed that wetlands >2.5 km from
the nearest turbine were beyond a potential zone of influence.
Using the distance and physiographic region criteria, we
identified 3 potential reference sites of similar size for
each wind site based on upland land use (i.e., proportion
of cropland and perennial cover) and wetland density. For
the 6 potential sites, we compared the wetland number and
area (ha) for each class (i.e., temporary, seasonal, semi-
permanent) between each potential reference site and the
respective wind site to select the most similar reference site
(Table 1). The KE reference site was located 11.3 km west of
the KE wind site and the TAT reference site was located
3.2 km northwest of the TAT wind site (Fig. 1).

We identified 5,146 wetland basins encompassing 3,410 ha
from NWI data within the wind and reference sites and
considered each wetland a potential sample basin. Only
temporary, seasonal, and semi-permanent basins were pres-
ent at the wind sites so we did not survey lake wetlands at
reference sites. We did not survey basins that extended
>402 m from the boundary of a site to eliminate linear
wetlands that potentially extended long distances from the
wind and reference sites.

METHODS

Surveys

We surveyed sample wetlands during spring 2008, 2009, and
2010 to count local breeding duck pairs. We used 2 survey
periods (i.e., 28 April-18 May, early; and 21 May-7 June,
late) to account for differences in settling patterns for the
5 species (Stewart and Kantrud 1973, Cowardin et al. 1995)
and to reduce potential bias associated with differences in
breeding chronology among species (Dzubin 1969, Higgins
et al. 1992, Naugle et al. 2000). We divided the wind and
reference sites into 3 crew areas to spatially distribute survey
effort across the sites, and crews of 2 observers conducted
surveys on each of the 3 crew areas daily. The detection
probability of duck pairs was likely not equal among observ-
ers (Pagano and Arnold 2009) and we minimized potential
confounding of detection, observer, and survey area by ro-
tating observers among crew areas and partners daily.
Additionally, our analytical approach was not to compare
population estimates for wind and reference sites, which may
require development of correction factors (Brasher et al.
2002, Pagano and Arnold 2009), but rather to compare
expected rates of pair abundance. Consequently, we assumed
non-detection of ducks to be equal among all sites.

We surveyed wetlands within each crew area in a 2.59-km
grid pattern based on public land survey sections (PLSS). We
used maps with NAIP imagery and wetland basin perimeters
from NWI to assist orientation and navigation to survey
wetlands. Permission, accessibility, wetness, numbers of wet-

lands, size of wetlands, and numbers of birds affected the rate
at which we surveyed PLSS. Surveys began at 0800 hours
and continued until 1700 hours and were discontinued dur-
ing steady rainfall or winds exceeding 48 km/hr. We sur-
veyed most wetlands twice each year, once during each
survey period. We visited all sample wetlands during the
early survey period. We did not revisit wetlands that were
dry during the early survey. Annual changes in access per-
mission and wetland conditions due to precipitation resulted
in some basins being surveyed during only 1 of the survey
periods.

During the breeding season, waterfowl assemble into vari-
ous social groupings that are influenced by sex ratios, breed-
ing phenology, and daily activities (Dzubin 1969). We
counted social groups of the 5 target species using established
survey protocols (Hammond 1969, Higgins et al. 1992,
Cowardin et al. 1995, Reynolds et al. 2006) and recorded
observations for all sample wetlands that contained surface
water regardless of whether birds were present or absent. We
summarized field observations into 7 social groupings that
we subsequently interpreted to determine the number of
indicated breeding pairs for each species, basin, and survey
period (Dzubin 1969, Cowardin et al. 1995). On average, the
first count period (late April-early May) is regarded as an
acceptable approximation of the breeding population for
mallard and northern pintail (Cowardin et al. 1995,
Reynolds et al. 2006). Consequently, we used observations
during the early survey period to determine the number of
indicated breeding pairs for mallard and northern pintail.
Similarly, the second count period (late May—early June) is
generally used to approximate the breeding population of
blue-winged teal, gadwall, and northern shoveler (Cowardin
et al. 1995, Reynolds et al. 2006) and we used observations
during the late survey period to determine the number of
indicated breeding pairs for these 3 species. We used indi-
cated breeding pairs as the response variable in our models of
estimated duck pairs.

We reduced disturbance during surveys by observing
wetlands from 1 or more distant, strategic positions. We
approached and surveyed portions of basins that were ob-
scured by terrain or vegetation on foot. We noted birds
leaving the wetland because of observer disturbance to mini-
mize recounting on wetlands that we had not yet surveyed.
We estimated the proportion of the wetland that was wet
by visually comparing the surface water present in the
basin relative to the wetland extent displayed on the field
map. We recorded basins with no surface water as dry and
not surveyed.

We used NAIP (ca. 2009) and on-screen photo-interpre-
tation to develop a categorical variable describing the land-
cover of uplands (i.e., cropland, native grassland, idle planted
tame grass, alfalfa hayland) adjacent to or surrounding all
wetlands on the wind and reference sites. For wetlands
touching multiple upland landcover classes, we assigned
the class based on the largest wetland perimeter length.
The exception was for idle planted tame grass, where we
assigned the class if it touched any length of a wetland
perimeter because of the limited presence of this class in
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the landscape and its positive influence on pair settling
densities (Reynolds et al. 2007).

Data Analysis

The objective of our analysis was to compare estimates of
expected wetland-level abundance of breeding pairs on the
wind and reference sites among years. We used past analyses
of breeding duck pairs in the United States PPR and their
relationship to wetland and upland parameters to inform the
selection of candidate covariates (Cowardin et al. 1988, 1995;
Reynolds et al. 1996). Wetland-level covariates included
wetland class (i.e., seasonal, semi-permanent, or temporary;
Johnson and Higgins 1997), surface area of water in NWI
basin (wet area), and square root (sqrt) of wet area to reflect
the non-linear response to wetland area demonstrated by
breeding ducks in the PPR (Cowardin et al. 1988, 1995;
Reynolds et al. 2006). We used a categorical variable for
upland landcover (i.e., perennial cover, cropland) adjacent to
the wetland for the only upland covariate (Reynolds et al.
2007).

Generalized linear models with Poisson errors provided
an appropriate statistical framework for the analysis
(McCullagh and Nelder 1989, McDonald et al. 2000).
Preliminary summaries of the breeding pair data showed,
however, that all 5 species displayed indications of over-
dispersion relative to standard Poisson assumptions (i.e.,
both excess zeros and infrequent large counts; Appendix
A, available online at www.onlinelibrary.wiley.com; Zuur
et al. 2007). We addressed these challenges, while maintain
an approach consistent with past studies by conducting a 2-
stage analysis. We began by selecting appropriate models and
subsets of the covariates using a likelihood-based approach.
Then we used a simulation-based Bayesian approach to
estimate parameters of species-specific statistical models,
site- and year-level contrasts between wind and reference
sites, and lack-of-fit statistics. Our combined approach
allowed us to take advantage of the strengths of both
approaches (Royle and Dorazio 2008:74-75) to provide a
thorough analysis of the data.

We analyzed indicated breeding pairs from counts for each
of the 5 study species using separate models. Full Poisson
regression models described expected breeding pairs as a log-
linear function of site, year, wetland class, landcover, wet
area, and sqrt (wet area). We used Akaike’s Information
Criterion (AIC) differences (Burnham and Anderson
2002) to compare full Poisson models with Zero-Inflated
Poisson (ZIP) models. The ZIP models partially accounted
for potential excess zeros due to 2 sources: 1) non-detections
and 2) unoccupied, but suitable, wetlands. The ZIP models
described the data as a mixture of the counts described by the
log-linear model and a mass of excess zeros described by a
logit-linear model (Zuur et al. 2007). We conducted a
comparison of Poisson and ZIP models between the full
Poisson model and ZIP model that included a single addi-
tional parameter describing the expected probability of a false
zero. When AIC differences indicated the ZIP model was
more appropriate (i.e., AlCpyion — AICzp > 4), we used
ZIP models for all subsequent analysis. When ZIP models

were selected, the full logit-linear model for excess zeros
included covariates describing the upland vegetation cover
class associated with each wetland (cover class; Stewart and
Kantrud 1973), the area of the NWI basin covered by water
(wet area), and the square root of wet area.

We expected that the full models would likely be most
appropriate for the study species, as they were parameterized
with covariates that have been identified as useful predictors
of pair abundance in the Four-Square-Mile Breeding
Waterfowl Survey (FSMS) dataset, which has been collected
by the USFWS National Wildlife Refuge System since 1987
(Cowardin et al. 1995; Reynolds et al. 2006, 2007).
Nonetheless, we sought to efficiently use the information
in our less-extensive dataset by ensuring that we had selected
a parsimonious subset of the covariates for each species-
specific model. We removed a single covariate, or group
of covariates in the case of factor variables, from the full
model, ran the resulting reduced model, and recorded its
AIC value (Chambers 1992, Crawley 2007:327-329). We
repeated this procedure for every covariate. This resulted in a
vector of AIC values that described, for each covariate, or
covariate group, the effect of its removal on the AIC value of
the full model. Reduced models for each species contained
the set of covariates in the full model or the subset of
covariates that resulted in increases in AIC values greater
than 2 units per estimated parameter when they were re-
moved from the full model (Arnold 2010).

After selecting a model structure for each species, we
estimated the posterior distributions of model parameters
with Markov Chain Monte Carlo (MCMC) simulation
(Link and Barker 2009) in the Bayesian analysis software
WinBUGS 1.4.1 (Spiegelhalter et al., 2003). The structure
of the Bayesian ZIP models differed from the maximum
likelihood models in 2 ways. The 12 site and year combi-
nations were hierarchically centered and parameterized as
normally distributed displacements from a common intercept
(Gelman et al. 2004, Congdon 2005), and extra-Poisson
variation due to large wetland-level counts was accommo-
dated by a normally distributed error term (Appendix B,
available online at www.onlinelibrary.wiley.com).

We conducted all statistical analyses in the R environment
(R Development Core Team 2011). We used the generalized
linear models capability of base R and the contributed pack-
age pscl (Jackman 2008) to estimate likelihoods and AIC
values for Poisson and ZIP models. When selecting models
and subsets of the covariates, we considered AIC differences
greater than 4 to provide good evidence in favor of the model
with the smaller value (Burnham and Anderson 2002). To
generate Bayesian estimates of model parameters, we used
the contributed R2ZWinBugs (Sturtz et al. 2005) package to
run MCMC simulations in WinBUGS via R. For each
model, we ran 2 Markov chains for 500,000 iterations and
discarded the first 100,000 iterations from each chain to
minimize the influence of starting values and prior distribu-
tions. We used minimally informative prior distributions
and random starting values for model parameters and ran-
dom effects. We evaluated convergence to the posterior
distribution by examining plots of sequential draws for
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each parameter and also by the Gelman—Rubin statistic
(Gelman et al. 2004). We estimated the number of uncorre-
lated samples generated by each Markov Chain by the
Effective Sample Size (ESS; Kass et al. 1998, Streftaris
and Worton 2008). We required at least 200 uncorrelated
samples per chain for inference. We considered a model to
have converged when its Gelman—Rubin statistic was <1.1
and the plots of sequential draws indicated that the chains
had stabilized and were sampling from a similar space
(Gelman et al. 2004). We tested for lack-of-fit of the model
using a posterior predictive test (Gelman et al. 2004).
Specifically, we compared the variance-mean ratio for the
observed data to the variance-mean ratio of simulated data
generated from the posterior draws of model parameters. We
concluded that the model fit the data if the posterior pro-
portion of simulated variance-mean ratios that exceeded the
observed variance-mean ratio was greater than 0.01 and less
than 0.99 (Congdon 2005). We then used the CODA
(Plummer et al. 2009) package to summarize the posterior
distributions of model parameters, convergence diagnostics,
and derived quantities like lack-of-fit statistics and back-
transformed estimates of abundance. Using the 800,000
posterior simulations from each model, modal values of
categorical covariates, and median values of continuous cova-
riates, we calculated species-, site-, and year-specific medians
and 95% credible intervals of 1) the estimated posterior
distribution of the log-scale model parameters, 2) the esti-
mated posterior distribution of expected pair abundance on
wetlands of median area, and 3) the estimated posterior
distribution of the back-transformed contrast in expected
pair abundance between wind and reference sites in each
year. These quantities provided the basis for comparison of
pair abundance between wind and reference sites.

We used point estimates of pair density for the median
seasonal wetlands size (i.e., 0.2 ha) in grassland to assess the
potential effect of wind energy development on breeding
duck pair densities. We selected seasonal wetlands because
they were the most numerous wetlands in our sample (58%)
and because breeding duck pairs use seasonal wetlands at
greater rates than other wetland classes (see Reynolds et al.
2006, 2007; Loesch et al. 2012); most pairs (54%) were
observed on seasonal wetlands.

We evaluated the potential impact of wind energy devel-
opment from both a statistical and biological perspective. We
compared point estimates of density among sites and within
years to either support or reject an effect. We assessed the
potential biological impact of breeding pair avoidance of
wind sites by calculating the proportional change in the
estimated density of pairs between wetlands in wind and
reference sites for each species and year. The percent change
reflects the potential impact to breeding duck populations in
the presence of wind energy development.

RESULTS

As a result of variable wetland conditions both within and
among years, and annual changes in access to private land, we
surveyed different numbers and area of wetland basins each
year. Water levels in wetlands were low during 2008 and 35%

of wetland basins visited during the early count contained
water and generally were only partially full (e.g., seasonal
regime, mean = 54% full, n = 684). Water levels increased
in 2009 and 2010 and only 15% of 2,464 and 12% of 3,309
wetland basins, respectively, were dry during the early count.
Basins containing water were also more full during 2009
(e.g., seasonal basin mean = 103% full, » = 1,089) and 2010
(e.g., seasonal basin mean = 93% full, » = 1,407). We con-
ducted 5,339 wetland visits during the early count and
4,999 wetland visits during the late count. During the early
count, we observed 5,287 indicated breeding pairs of mallard
(3,456 [range = 146-552]) and northern pintail (1,831
[range = 51-310]), and 10,473 indicated breeding pairs of
blue-winged teal (5,886 [range = 180-984]), gadwall (2,839
[range = 75-506]), and northern shoveler (1,748 [range =
55-318]) during the late count.

Model Selection and Estimation

Our ZIP models provided a substantially better fit than
Poisson models for every species. Differences in AIC
(AIC, 0isson — AIC,;p) were 426 for blue-winged teal, 137
for gadwall, 218 for mallard, 384 for northern pintail, and
78 for northern shoveler. All of the covariates in the full
model were retained for mallard, northern pintail, blue-
winged teal, and northern shoveler. Wetland class was
dropped for gadwall. Differences in AIC between the full
model and the nearest reduced model were 11 for blue-
winged teal, 3 for gadwall, 26 for mallard, 6 for northern
pintail, and 29 for northern shoveler. The MCMC simu-
lations converged for every species-specific model, indicating
that the parameter estimates and credible intervals from
these models provided a sound basis for inference. The
maximum upper 95% credible interval of all R-hat values
for any structural parameter was 1.01 for blue-winged teal,
1.01 for gadwall, 1.01 for mallard, 1.02 for northern pintail,
and 1.04 for northern shoveler. The posterior predictive test
indicated that the models fit the data for every species. The
proportion of simulated variance-mean ratios that exceeded
the observed variance-mean ratio was 0.52 for blue-winged
teal, 0.75 for gadwall, 0.61 for mallard, 0.59 for northern
pintail, and 0.72 for northern shoveler. Minimum effective
sample sizes were 709 for blue-winged teal, 553 for gadwall,
307 for mallard, 346 for northern pintail, and 612 for north-

ern shoveler.

Estimates

Differences in estimated breeding duck pair densities in a
wind site and a reference site varied among site pairs (2),
years (3), and species (5), and posterior median values of
these 30 contrasts ranged from —0.281 to 0.130 (Table 2).
Estimated patterns of contrasts for expected breeding duck
pair density between wind and reference sites were similar for
all species. Given median wet area and the mode of the
categorical covariates, expected, basin-level densities of
duck pairs for the 5 species was either statistically indistin-
guishable (14 of 30) between wind and reference sites or was
lower (16 of 30) on wind sites than reference sites depending
on site, year, and species (Fig. 2). Regardless of whether 95%

credible intervals overlapped zero, density estimates were

The Journal of Wildlife Management



Table2. Log-scale estimated posterior medians and 95% of the estimated posterior distribution from the count portion of a zero-inflated, overdispersed Poisson
model of indicated blue-winged teal (4nas discors [BWTE]), gadwall (4. strepera [GADW]), mallard (4. platyrhynchos [MALLY]), northern pintail (4. acuta
[NOPIT]), and northern shoveler (4. c/ypeata [NSHO]) pairs on seasonal wetland basins for development (wind) and paired reference sites in North Dakota and
South Dakota, USA. Sites are Kulm-Edgely (KE) and Tatanka (TAT) for years 2008 (08), 2009 (09), and 2010 (10).

Reference Wind

Species Site Year Median 2.5% 97.5% Median 2.5% 97.5%
MALL KE 08 0.47 0.21 0.73 0.15 —0.13 0.43
KE 09 —0.49 —0.78 —0.22 —0.90 -1.17 —0.64

KE 10 —0.42 —0.66 —0.20 -0.77 —1.04 -0.51

TAT 08 0.29 0.02 0.56 0.41 0.17 0.65

TAT 09 —0.38 —0.61 —0.14 —0.63 —0.89 —0.38

TAT 10 —-0.33 —-0.55 —-0.10 —0.47 -0.71 —0.22

BWTE KE 08 —0.13 -0.25 —0.00 0.22 0.01 0.45
KE 09 —0.46 —0.66 —-0.27 —0.52 —0.74 —0.32

KE 10 -0.13 —0.30 0.04 —0.58 —0.78 —0.39

TAT 08 0.25 0.06 0.45 0.18 0.01 0.36

TAT 09 —-0.15 —0.32 0.02 —0.39 —0.58 —-0.21

TAT 10 0.03 —0.12 0.19 -0.19 —0.36 —0.02

NOPI KE 08 —-0.25 —0.61 0.12 —0.80 —1.24 —-0.39
KE 09 —0.80 -1.16 —0.45 —1.54 -1.93 -1.17

KE 10 —0.72 -1.01 —0.42 —1.20 —1.56 —0.87

TAT 08 —0.10 —0.46 0.27 0.16 -0.15 0.48

TAT 09 —0.35 —0.63 —0.06 —0.76 -1.07 —0.44

TAT 10 —0.15 —0.41 0.13 —0.38 —0.67 —0.07

GADW KE 08 0.09 -0.17 0.37 —0.13 —0.43 0.18
KE 09 —0.52 —-0.77 —-0.28 —0.91 -1.19 —0.64

KE 10 —0.61 —0.83 —0.38 —1.42 -1.72 -1.14

TAT 08 0.07 —-0.18 0.34 0.17 —-0.05 0.41

TAT 09 —0.46 —0.69 —0.22 —0.55 —0.81 -0.29

TAT 10 —0.69 —0.92 —0.46 —0.62 —0.86 —0.38

NSHO KE 08 —0.35 —0.61 —0.08 —0.49 -0.79 —0.18
KE 09 -0.91 -1.17 —0.67 —1.00 -1.29 —0.73

KE 10 —0.78 —-1.00 —-0.57 -1.11 -1.39 —-0.85

TAT 08 —0.23 —0.49 0.00 —-0.30 —0.52 —0.08

TAT 09 —0.59 —0.80 —0.37 —0.99 -1.25 —0.74

TAT 10 —0.36 —-0.55 —0.16 —0.69 —0.90 —0.47

lower on sites with wind development for 26 of the 30
combinations (i.e., mallard and blue-winged teal: 12 combi-
nations, 11 negative [range —6% to —36%]), 7 did not
overlap zero; gadwall, northern pintail, northern shoveler:
18 combinations, 15 negative [range —5% to —56%], 9 did
not overlap zero). The general pattern of results were similar
for all species, consequently, we chose a representative early
and late arriving species with the largest number of indicated
breeding pairs, mallard and blue-winged teal, respectively,
for detailed presentation of results.

Mallard and Blue-Winged Teal

Mallard and blue-winged teal comprised 59% of the
indicated breeding pair observations (i.e., 3,473 mallard;
5,928 blue-winged teal). Full models were retained
for both mallard and blue-winged teal, and the point
estimate of density was greatest in 2008 for both KE
and TAT sites, but varied among years and sites (mallard:
wind median = 0.42 [range = 0.30-1.03], reference
median = 0.41 [range = 0.21-0.97]; blue-winged teal:
wind median = 0.51 [range = 0.42-0.94], reference
median = 0.66 [range = 0.47-0.96]). For mallard, estimat-
ed breeding pair densities on seasonal wetlands at wind sites
were lower for 5 of the 6 site-year combinations (median =
0.11, range = —0.28 to 0.11) and error bars representing
95% of the posterior distribution of the estimate did not

overlap zero for 4 of the 6 site-year comparisons (Fig. 2A).
Similarly, for blue-winged teal in 5 of the 6 site-year combi-
nations, estimated pair densities were lower for seasonal
wetlands on wind sites (median = —0.14, range = —0.24
to <0.01) and error bars representing 95% of the posterior
distribution of the estimate did not overlap zero for 3 of the
6 site-year comparisons (Fig. 2B). Only 1 site-year combi-
nation for each of mallard and blue-winged teal suggested
greater pair densities on wind sites, but in both cases 95%
confidence intervals overlapped zero.

The estimated proportional change of mallard pair densi-
ties for wetlands in wind sites was negative in 5 of 6 site-year
combinations (median = —10%, range = 13% [TAT 2008]
to —34% [KE 2009]; Fig. 3A). The proportional change for
blue-winged teal was also negative in 5 of 6 site-year combi-
nations (Fig. 3B). The median estimate of proportional
change for blue-winged teal densities between wind and
reference sites was —18% (range 0% [KE 2009] to —36%
[KE 2010]).

DISCUSSION

All 5 of our dabbling duck study species demonstrated a
negative response to wind energy development and the re-
duced abundance we observed was consistent with behavioral
avoidance. Avoidance of land-based wind energy develop-
ment has been observed for numerous avian species during
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Figure 2. Year-specific estimated differences between estimated posterior median abundance of mallard (4nas platyrhynchos; A), blue-winged teal (4. discors; B),
gadwall (4. strepera; C), northern pintail (4. acuta; D), and northern shoveler (4. clypeata; E) on a seasonal wetland of median area (0.2 ha) embedded in perennial
cover on a wind site and its corresponding reference site in North Dakota and South Dakota. Error bars represent 95% of the posterior distribution of the

estimate. Site-year combinations are Kulm-Edgely (KE) and Tatanka (TAT) for 2008 (08), 2009 (09), and 2010 (10).

breeding (Leddy et al. 1999, Johnson et al. 2000, Walker
et al. 2005, Shaffer and Johnson 2008, see Madders and
Whitfield 2006), and does not imply complete abandonment
of an area but rather the reduced use of a site (Schneider et al.
2003). This is consistent with our results, where breeding
pairs continued to use wetland habitat at the wind sites but at
reduced densities.

Our selection of paired wind and reference sites and ana-
lytical approach were designed to control for differences in
site characteristics and annual variation in habitat conditions,
and to use well-understood relationships between breeding
duck pairs and wetlands (Cowardin et al. 1995; Reynolds
et al. 2006, 2007). Despite the large amount of breeding pair
data we collected, discerning if the presence of wind energy
development was the ultimate cause of the lower estimated
pair abundance on the wind versus reference sites is difficult.
However, we did detect a directional effect of wind energy
development sites over a 3-year period at the 2 sites that are
representative of areas with greater estimated duck densities,
and adds to the body of evidence suggesting a negative effect
of wind energy development. Reduced wetland use in high
density wetland areas with the potential to attract and sup-
port relatively greater densities of breeding duck pairs is of
concern to waterfowl biologists and managers because when
wet, these areas are vital to the sustainability of North

American duck populations. The somewhat limited temporal
and geographic scope of our study and confounding
between land use and duration of development prevents us
from drawing strong conclusions about cumulative effects of
wind energy development on breeding ducks (see Krausman
2011). Nonetheless, a 10-18% reduction in addition to other
stressors is potentially substantial.

We observed larger negative displacement for most species
and years in the KE wind site when compared to the TAT
wind site. We found 2 notable differences in the wind sites
that may have contributed to these results, the land use and
age of development. The KE site was predominantly crop-
land and older than the grassland-dominated TAT site. The
combination of multiple stressors, in this case agriculture and
wind energy development, may have resulted in a greater
impact to breeding ducks using wetlands in agricultural
settings. Differences in estimated pair abundance between
the cropland and grassland site suggest that greater habitat
quality measured by the percent of grassland area and lack of
cropping history in associated wetlands within a site may
reduce avoidance of wind development when compared to
agricultural landscapes. Breeding waterfowl may occupy wet-
lands at greater rates in grassland than cropland (Reynolds
et al. 2007), nest success is generally greater in grasslands

(Greenwood et al. 1995, Reynolds et al. 2001, Stephens et al.

The Journal of Wildlife Management



Acs B: C*®
g B ‘ g § g & ‘
£ | } i ] e
B { bl el R e Rl . el
i 1 I B
§
3 3 o
= | s | g .
: i’-; : -
8| | _; 8 : B —I
é - £
= E
B ios i e
# é B
f - Gl
o I— == o | LN = ==
KEDN  KEDE  KEI0 TR TATOR TATIO KEDR  KEDR  KEND  TATDR  TADE TWTI0 i S RETE: AR MR IR
Sk B yeat v arnd i Bl B it
E ¢
D:
- g 8
E = =
;E jg : |
q_!_ = N -z_i e
< g T oE | I |
! | B aaln
E o | % S ‘
I °
3 =
5= § Bl
Y| |
" gt
L | . N |
WEDB  KEOG  KEdD  TATOR  TATA TN WEGE  KED®  KEI0  TATOR  TATDS  TATIO
Bia ard yoar 4w aeed poat

Figure 3. Year-specific estimated number of mallard (Anas platyrbynchos; A), blue-winged teal (4. discors; B), gadwall (4. strepera; C), northern pintail (4. acuta;
D), and northern shoveler (4. c/ypeata; E) on a seasonal wetland of median area (0.2 ha) embedded in perennial cover on a wind site expressed as a percentage of
pairs expected on the same wetland in the corresponding reference site in North Dakota and South Dakota. Error bars represent 95% of the posterior distribution
of the estimate. Site-year combinations are Kulm-Edgely (KE) and Tatanka (TAT) for 2008 (08), 2009 (09), and 2010 (10).

2005), and wetlands in grass landscapes have greater occu-
pancy rates by duck broods (Walker 2011), suggesting an
overall greater productivity potential for breeding ducks in
grassland versus cropland landscapes. The ability of intact
habitat to reduce impacts of energy development is supported
in current literature. In Wyoming, sage-grouse (Centrocercus
urophasianus) residing in a fragmented landscape showed a
3 times greater decline in active leks at conventional coal bed
methane well densities (1 well per 32 ha) than those in the
most contiguous expanses of Wyoming big sagebrush
(Artemisia tridentata) in North America (Doherty et al.
2010). A similar relationship has been document for large
mammals. In the Boreal forest, woodland caribou (Rangifer
tarandus caribou) populations could sustain greater levels of
industrial development and maintain an increasing popula-
tion when they resided in large forest tracts that were not
fragmented by wildfires (Sorensen et al. 2008).

Our ability to support the hypothesis that habitat quality
mitigates impacts could be confounded by time-lags in
detecting impacts, as well as the potential for ducks to
habituate to wind energy development over time but at a
cost to individual fitness (Bejder et al. 2009). The KE wind
site was cropland-dominated and began operation in 2003,
whereas the TAT wind site was grassland-dominated and
began operation in 2008, and was 3 years old during the final
field season. Many recent studies for a variety of species and
ecosystems have shown time lags between dates of first

construction and full biological impacts. In Wyoming
impacts to sage-grouse in some instances doubled 4 years
post-development versus the initial year of development
(Doherty et al. 2010) and lags varied from 2 to 10 years
(Harju et al. 2010). In some instances, full biological impacts
may not be apparent for decades. For example, 2 decades
passed before impacts of forest logging resulted in woodland
caribou population extirpation within 13 km of logging
(Vors et al. 2007). In a review paper on the effects of
wind farms to birds on 19 globally distributed wind farms
using meta-analyses, time lags were important in detecting
impacts for their meta-analyses with longer operating times
of wind farms resulting in greater declines in abundance of
Anseriformes (Stewart et al. 2007). Pink-footed geese for-
aging during spring appear to have habituated to the presence
of wind turbines in Europe (Madsen and Boertmann 2008).
We therefore cannot distinguish between these 2 competing
hypotheses without additional study.

Wind resources are both abundant and wide-spread in the
PPR in the United States (Heimiller and Haymes 2001,
Kiesecker et al. 2011), and the development of an additional
37 GW of wind energy capacity in the PPR states is neces-
sary to meet 20% of domestic energy needs by 2030
(USDOE 2008). The projected wind farm footprint in
PPR states to support this target is approximately
39,601 km?. Even if recommendations for siting energy
development outside of intact landscapes suggested by
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Kiesecker et al. (2011) are implemented by the wind indus-
try, millions of wetlands occur in agricultural landscapes and
our results indicate that wind energy development will likely
reduce their use by breeding duck pairs.

Waterfowl conservation partners in the PPR use strategic
habitat conservation (Reynolds et al. 1996, 2006; Ringelman
2005; USFWS 2006; Loesch et al. 2012) in an adaptive
management framework to target protection, management,
and restoration based on biological and landscape informa-
tion, primarily in response to habitat loss from agricultural
activities. From a habitat quality and conservation perspec-
tive, wind energy development should be considered as
another stressor relative to the cumulative effects of anthro-
pogenic impacts on limiting factors to breeding waterfowl
populations.

The protection of remaining, high priority grassland and
wetland resources in the United States PPR is the primary
focus of waterfowl habitat conservation (Ringelman 2005,
Niemuth et al. 2008, Loesch et al. 2012). Population goals
and habitat objectives were established to maintain habitat
for breeding pairs and the current productivity of the land-
scape (Ringelman 2005, Government Accounting Office
2007). Spatially explicit decision support tools (Reynolds
et al. 1996, Niemuth et al. 2005, Stephens et al. 2008,
Loesch et al. 2012) have been used effectively to target
and prioritize resources for protection. New stressors such
as energy development in the PPR that negatively affect the
use of wetland resources have ramifications to breeding
waterfowl populations (i.e., potential displacement to lower
quality wetland habitat) and their conservation and manage-
ment. Thus, population and habitat goals, and targeting
criteria may need to be revisited if large-scale wind develop-
ment occurs within continentally important waterfowl con-
servation areas like the PPR.

MANAGEMENT IMPLICATIONS

Balancing the development of wind energy and current
conservation efforts to protect habitat for migratory birds
is complex because most conservation and wind energy
development in the region occur on private land (USFWS
2011). Given that breeding duck pairs do not completely
avoid wetlands in and adjacent to wind energy developments
and resource benefits remain, albeit at reduced levels, the
grassland and wetland protection prioritization criteria used
by conservation partners in the PPR (Ringelman 2005) could
be adjusted to account for avoidance using various scenarios
of acceptable impact. For example, the wind sites used in our
study are in high priority conservation locations (Ringelman
2005, Loesch et al. 2012). After accounting for effects of
duck displacement by wind development, their priority was
not reduced for either site. Consequently, wind-development
does not necessarily preclude these sites from consideration
for protection. Additionally, using the measured negative
impact of wind energy development and production on
breeding duck pairs, opportunities to work with wind energy
industry to mitigate the reduced value of wetlands in
proximity to wind towers should be investigated.
Continued partnership by the wind energy industry and

wildlife conservation groups will be critical for continued
research. Further, we suggest expanding our research both
spatially and temporally to better address cumulative
impacts, zone of influence, impacts on vital rates, potential
habituation or tolerance, and/or lag effects of long-term
exposure to wind energy development.
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