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Abstract The Prairie Pothole Region (PPR) contains ecosys-
tems that are typified by an extensive matrix of grasslands and
depressional wetlands, which provide numerous ecosystem
services. Over the past 150 years the PPR has experienced
numerous landscape modifications resulting in agricultural
conversion of 75–99 % of native prairie uplands and drainage
of 50–90% of wetlands. There is concern over how and where
conservation dollars should be spent within the PPR to protect
and restore wetland basins to support waterbird populations
that will be robust to a changing climate. However, while
hydrological impacts of landscape modifications appear sub-
stantial, they are still poorly understood. Previous modeling
efforts addressing impacts of climate change on PPRwetlands
have yet to fully incorporate interacting or potentially
overshadowing impacts of landscape modification. We
outlined several information needs for building more informa-
tive models to predict climate change effects on PPR wet-
lands. We reviewed how landscape modification influences
wetland hydrology and present a conceptual model to describe
how modified wetlands might respond to climate variability.
We note that current climate projections do not incorporate
cyclical variability in climate between wet and dry periods
even though such dynamics have shaped the hydrology and
ecology of PPR wetlands. We conclude that there are at least
three prerequisite steps to making meaningful predictions
about effects of climate change on PPR wetlands. Those evi-
dent to us are: 1) an understanding of how physical and wa-
tershed characteristics of wetland basins of similar

hydroperiods vary across temperature and moisture gradients;
2) a mechanistic understanding of how wetlands respond to
climate across a gradient of anthropogenic modifications; and
3) improved climate projections for the PPR that can mean-
ingfully represent potential changes in climate variability in-
cluding intensity and duration of wet and dry periods. Once
these issues are addressed, we contend that modeling efforts
will better inform and quantify ecosystem services provided
by wetlands to meet needs of waterbird conservation and
broader societal interests such as flood control and water
quality.
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Background

The Prairie Pothole Region (PPR) contains key North
American ecosystems that are typified by a matrix of grass-
lands and depressional wetlands, which support diverse aquat-
ic and terrestrial communities. Wetlands of this region also
provide numerous important ecosystem services (e.g., flood
protection, groundwater recharge, carbon sequestration, bio-
diversity, etc.; Zedler and Kercher 2005; Gleason et al. 2008).
This region’s ecological importance has been primarily attrib-
uted to its role in supporting waterbird populations by provid-
ing critical migratory and breeding habitat (Krapu 1981; Batt
et al. 1989; Arzel et al. 2006; Anteau and Afton 2009a).
Accordingly, abundance and quality of wetlands in the PPR
affect persistence and trajectory of migratory waterbird popu-
lations (Kaminski and Gluesing 1987; Raveling and
Heitmeyer 1989; Anteau and Afton 2011).
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Wetlands of the PPR also shape ecosystems, recreation,
and economics outside the PPR. Migratory waterbirds depen-
dent upon PPRwetlands for stopover or breeding habitat func-
tion as predators of invertebrates (Anteau and Afton 2009b),
provide prey for avian and mammalian predators (Todd et al.
1982; Rockwell and Gormezano 2009), and facilitate dispers-
al of aquatic organisms (Swanson 1984; Charalambidou and
Santamaria 2005). Furthermore, migratory waterfowl that
come to this region are of great interest to the public for wild-
life viewing and hunting, as well as subsistence harvest in
some more northern areas.

Despite many important wetland-derived ecological ser-
vices, the motivation for most wetland conservation policies
and practices in the PPR has been to provide habitat for mi-
gratory birds. Many hundreds of millions of dollars are spent
annually on protection and restoration of wetlands and sur-
rounding uplands for the benefit of waterfowl and waterbird
populations (U.S. Fish and Wildlife Service 2011; Walker
et al. 2013; U.S. Department of Agriculture, 2016). Those
investments are administered by the U.S. Fish and Wildlife
Service (e.g., Small Wetlands Acquisition Program or “Duck
Stamp Program”, Partners for fish and Wildlife Program), US
Department of Agriculture (e.g., Conservation Reserve
Program [CRP], Wetland Reserve Program [WRP]), non-
governmental organizations (e.g., Ducks Unlimited, The
Nature Conservancy), and State and Provincial governments.
However, long-term changes in temperature and precipitation
in the PPR threaten many of the other services that these
wetlands provide. Accordingly, there is a critical need for
understanding how wetlands in the PPR will respond to
projected climate change because that knowledge can help
inform how and where conservation dollars could be spent
either in response to climate change or to abate stressors
caused by climate change (Johnson et al. 2005, 2010;
Loesch et al. 2012).

While there have been previous scenario-based modeling
efforts to predict impacts of climate change on PPR wetlands
(e.g., Johnson et al. 2005, 2010), those approaches did not
fully incorporate interacting or potentially overshadowing im-
pacts of land use on wetland hydrology and ecology (Anteau
2012; Niemuth et al. 2014; McCauley et al. 2015). Much of
the data used to develop mechanistic models of wetland hy-
drology has come from wetlands situated in landscapes that
are more intact than the majority of wetlands in the PPR (i.e.,
Cottonwood Study Area, in North Dakota, Orchid Meadows
in South Dakota; Johnson et al. 2005, 2010). Another pressing
concern is that climate model outputs (i.e., climate projec-
tions) do not incorporate or explore potential changes in the
cyclical variability in climate between wet and dry periods,
which have shaped the hydrology and ecology of PPR wet-
lands. In this manuscript we outline some prerequisite needs
for building more informative models to predict how climate
change may influence wetlands within the PPR.

Variation in Physical and Watershed Characteristics

Often scientists generalize the function of wetlands based on a
classification system that uses a spectrum of observed states to
organize wetlands based on ponded water permanence, while
accounting for inter-annual variability in moisture conditions
(e.g., Stewart and Kantrud 1971). Such classifications provide
broad-level descriptions of observed hydroperiods, as op-
posed to reasons why a certain hydroperiod has been ob-
served. In an area as expansive as the PPR, temperature and
precipitation gradients are evident (see Johnson et al. 2005).
Therefore, for wetlands to have the same observed hydrologic
state (e.g., semipermanently-ponded wetland) across geo-
graphic gradients, they must have differing physical charac-
teristics such as contributing watershed area, soil attributes,
and connections to ground water. Given these fundamental
differences, when spatially modeling wetland dynamics, one
must recognize that a wetland of a given class in the south-
eastern PPR, for instance, likely has different physical and
watershed characteristics compared to another wetland of the
same class in the northwestern PPR. Moreover, such differ-
ences should be incorporated into models used to predict hy-
drologic outcomes (e.g., hydroperiod and outflow).
Unfortunately, these apparent regional differences pose a sig-
nificant challenge for mechanistically modeling wetland dy-
namics because these models generally require detailed infor-
mation about physical and watershed characteristics which are
largely not available across the entire PPR landscape. Of
course, one could assume that all wetlands are similar to those
few intensely studied wetlands in the PPR. But considering
our points above, this is likely not a tenable assumption be-
cause predictions of those models likely would be biased geo-
graphically and understanding geographic differences has
been a major objective of such modeling efforts.
Alternatively, wetland classifications of observed hydrologi-
cal states can be useful in statistical models, particularly when
considering spatially-standardized climate data (e.g., PRISM;
Daly et al. 2000; Di Luzio et al. 2008) because statistical
models can be developed to describe observed hydrological
states while accounting for unknown spatial variability in wa-
tershed characteristics (van der Post et al. 2016). We contend
that capturing and describing this variation is a needed first
step toward informing more mechanistic hydrologic models.

In addition to geographically-driven variation in wa-
tershed characteristics there is potential for substantial
variation within landscapes that experience similar cli-
mate. We suspect there are several combinations of
physical and watershed characteristics that lead to a
similar observed hydroperiod state. Furthermore, it is
reasonable to assume that climate change may not affect
each of those variables uniformly (e.g., watershed area
vs. connection to groundwater inputs). Therefore, a
more robust mechanistic modeling approach would be

S300 Wetlands (2016) 36 (Suppl 2):S299–S307



informed by a larger sample or census of physical wet-
land parameters.

Statistical models can be used for inferring relationships
over broad areas and through time while allowing for uncer-
tainties from multiple sources, but they tend to be somewhat
restricted to a region and time period of inference (Cressie
et al. 2009; Cressie and Wilke 2011). In contrast, mechanistic
models tend to be less uncertain because they rely on fairly
well known processes to make predictions (Clark and Gelfand
2006; Clark 2007). However, many mechanistic models rely
on input parameters derived from site-specific studies, which
may limit their applicability in making broader spatial and
temporal predictions of system dynamics (e.g., Johnson
et al. 2005, 2010). Recent advances in computing have opened
up the option of merging statistical estimation with mechanis-
tic process models that should lead to better understanding of
how systems work and also allow for broader spatial and
temporal predictive capacity (Clark and Gelfand 2006;
Cressie and Wilke 2011). We suggest that a major step for-
ward in modeling wetland hydrologic dynamics on a land-
scape scale will require integrating statistical spatiotemporal
relationships into mechanistic wetland hydrologic models in
order to improve broad-scale predictions.

Land Use Changes in the Prairie Pothole Region

During the past 150 years the PPR has been subject to increas-
ingly intensive and extensive landscape modifications for ag-
ricultural production. Demand for increased agricultural pro-
duction has resulted in conversion of 75–99 % of native prai-
rie uplands (Samson and Knopf 1994) and drainage of 50 to
90 % of the original wetlands (e.g., North Dakota and Iowa,
respectively; Dahl 1990). Similar landscape conversion has
also occurred in the Canadian portion of the PPR. Cortus
et al. (2009) reported that over 40 % of wetlands in
Saskatchewan have been drained. Given the intensity and ex-
tent of various landscape modifications in this region, we ar-
gue that not accounting for such changes likely limits infer-
ence about wetland function because only a small proportion
of wetlands occur in relatively unaltered prairie landscapes.
Discounting land use change also could result in suboptimal
allocation of conservation actions taken to abate impacts of
climate change.

Effects of Cropping Practices on Wetland Hydrology A
number of studies have suggested that wetlands situated in
watersheds dominated by cropland receive more surface-
water runoff than those occurring in grassland-dominated
landscapes (Euliss and Mushet 1996; van der Kamp et al.
2003; Voldseth et al. 2007). Although a critical consideration
for making hydrological predictions of wetlands under partic-
ular climate scenarios, situational differences in surface runoff

has yet to receive adequate study in the context of informing
landscape-scale hydrological models across the range of
cropping practices and soil types throughout the PPR.
Moreover, effects of land use on ponded-water area of wet-
lands may interact with climate. For instance, McCauley et al.
(2015) found that semipermanently- and permanently-ponded
wetlands in landscapes dominated by cropping had smaller
pond area during dry periods than those situated in
grassland-dominated landscapes. However, during wet pe-
riods they found no difference in ponded-water area between
those same wetlands. These findings point to a need for a
better understanding of how land use influences runoff into
wetlands during both dry and wet periods, as well as evalua-
tions of how various crop types and grassland communities
affect groundwater and pond area of wetlands (McCauley
et al. 2015).

Effects of Consolidation Drainage on Wetland Hydrology
Various types of wetland and upland drainage are landscape
modifications often associated with agriculture, which have
led to changes in responses of wetlands to climate throughout
the PPR. Many wetlands in the PPR have been mechanically
leveled or ditched, which effectively eliminates wetland ba-
sins and increases velocity of water flow from uplands to
stream networks. Other forms of drainage have impacts on
wetlands remaining on the landscape. The southeast portion
of the PPR region (IA, MN) has a long history of using tile
drainage in upland and wetland areas, but this landscape mod-
ification is relatively recent in the eastern portions of North
and South Dakota (Oslund et al. 2010; Finocchiaro 2014).
Upland tile drainage changes surface and near-surface runoff
rates and alters the groundwater table, which could potentially
shorten hydroperiods in some wetlands while simultaneously
increasing inflow into other wetlands or streams depending on
where the tile discharges. Although debate over agricultural
benefits and ecological impacts of upland-tile drainage con-
tinues (see Blann et al. 2009), effects of upland-tile drainage
on wetland hydrology are only beginning to be quantified.

In many parts of the PPR, complex anthropogenic drainage
systems are not extensively used, likely due to a combination
factors such as crop types, crop prices, growing season length,
soil fertility, rainfall, and undulating topography. In areas
without complex drainage systems, agricultural producers
commonly use surface modifications such as drainage ditches
in attempts to increase farmable area or efficiency. This prac-
tice involves the drainage of wetlands that reside higher in the
watershed into those positioned lower in the watershed (i.e.,
consolidation drainage; Fig. 1). Consolidation drainage can
alter how remaining wetlands respond to climate variation
(Anteau 2012; Wiltermuth 2014; McCauley et al. 2015).

We present a conceptual model that summarizes the effects
of consolidation drainage upon wetland hydrology, and pro-
pose this model as a hypothesis that is supported by recent and
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historical literature (Fig. 2). Over the past century many
semipermanently- and permanently-ponded wetlands have
become larger and have drawn down less extensively during
dry periods; these observed changes have been primarily at-
tributed to increased consolidation drainage within their wa-
tersheds (Anteau 2012; McCauley et al. 2015). Historically,
semipermanently-ponded wetlands responded slowly to cli-
mate variation. However, current observations indicate faster
hydrologic response to wetting periods, and attenuated re-
sponse to drying periods (McCauley et al. 2015; van der
Post et al. 2016).

It appears that mechanisms at play behind the progression
of increased wetland size is the functional increase in contrib-
uting watershed area that increases the amount of surface-
water runoff these wetlands receive, particularly during wet
periods (Fig. 2; McCauley and Anteau 2014; McCauley et al.
2015).We suspect that even during dry periods wetlands with-
in drained watersheds receive more surface runoff than those

in undrained watersheds. As ponded area of a wetland in-
creases, it captures precipitation which would have normally
infiltrated into the ground, been taken up by plants, or evapo-
rated (Winter 2003). For wetlands positioned in deeper basins
(≳ 2 m depth to spill point), those entering into the dry period
with more water will likely experience lower rates of evapo-
transpiration caused by a reduction in surface area to volume
ratio and presumably fewer respiring emergent plants.
Accordingly, wetlands in drained watersheds receive more
runoff causing increased ponded area that attenuates their re-
sponse to dry periods. Wiltermuth (2014), borrowing from
epidemiology terminology, referred to this phenomenon as a
progressively-chronic effect of consolidation drainage. Much
like a long-term chronic disease, the effects of prior causal
factors (watershed drainage, in this case) are not as serious at
first, but progressively become worse with time. We expect
that the nominal effects, those observable at the local water-
shed level, of consolidation drainage will not be fully realized
until a wetland basin is full and excess water moves into
higher-order watersheds (Fig. 2). When these basins contrib-
ute water to higher-order watersheds, there is potential for
progressively-chronic effects over a much broader spatial ex-
tent. For example, as of 2010, approximately 40 % of the
watersheds of semipermanently-ponded wetlands in North
Dakota had sufficient drainage to create a pattern of increasing
growth over time (Wiltermuth 2014; M. J. Anteau,
unpublished data; see Fig. 2). Twenty-four percent of modi-
fied watersheds had terminal wetlands that were >90 % of
their total basin area, suggesting that those wetlands were
likely stabilized and spilling runoff water into higher order
watersheds.

Although wet and dry periods clearly influence the amount
of ponded water in wetlands (Fig. 3; Euliss et al. 2004; van der
Post et al. 2016), the addition of increased consolidation drain-
age alters hydrologic responses to climate events (Anteau
2012; McCauley et al. 2015). While the models we described
here were developed to explain observed changes in land use
and their effects on wetland hydrology (Fig. 2), it is also likely
that potential future increases in intensity of precipitation
events due to climate change, such that they increase runoff
events (Winter 2003), could cause similar escalations in wet-
land size.

Historical Climate of the Prairie Pothole Region

Climatic shifts between wet and dry periods have driven
water-level fluctuations in wetlands of this region for over
2000 years (Fig. 3; Laird et al. 2003). Such fluctuations have
driven the hydrology of PPR wetlands and shaped the evolu-
tion of species and communities dependent on those wetlands.
Dynamics in ponded water levels are thought to be a driver of
wetland productivity because drying of benthos facilitates

Fig. 1 Callout box describing the concepts of wetland watersheds and
consolidation drainage

Fig. 2 Conceptual model that incorporates observed and theoretical
relationships describing the response of wetland water levels to climate
variability in undrained landscapes and those that have had extensive
consolidation drainage
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nutrient cycling (i.e., oxidation) and leads to a pulse of prima-
ry productivity when wet conditions subsequently return
(Murkin 1989; Euliss et al. 1999; Euliss et al. 2004).
Evaluations of recent historical and long-term proxy climate
data in the PPR suggest substantial spatial and temporal het-
erogeneity in wet and dry periods (for example, even within
100 km; Laird et al. 2003; van der Post et al. 2016). Such a
patchwork of climatic conditions likely provided primemigra-
tory and breeding habitat for waterbirds during most years
(Anteau 2012).

Increases in temperature and changes in precipitation are
typically considered when evaluating potential effects of cli-
mate change. However, an alternating pattern of wet–dry pe-
riods shaped the evolution of species and ecosystems in the
PPR.Moreover, our conceptual model predicts that these wet–
dry periods are also important for understanding changes in
wetland hydrology caused by climate and land use. An impor-
tant question about effects of climate change not yet consid-
ered is: Have there been or will there be changes in the mag-
nitude, frequency, and spatial relationships of these wet–dry
periods? Given the strong link between ecology, hydrology,
and land use and the variability of wet and dry periods in the
PPR, we suggest that more work needs to be done to develop
climatological models that can make meaningful projections
about wet and dry periods that current regional downscaled
models cannot.

Potential Interactions of Climate and Land Use
Changes

Ecological Impacts The ecological fate of wetlands that fill to
their spill point due to aforementioned progressively-chronic
effects likely trend in one of two directions depending upon on
the depth of the basin (Wiltermuth 2014; Wiltermuth and
Anteau 2016). In deeper basins (≳ 2 m depth to spill point),
wetlands would function more like stabilized lacustrine sys-
tems. In shallower basins (≲ 2 m depth to spill point), stabili-
zation and the concurrent deposition of upland sediments cre-
ate conditions for expansion of cattail (Typha spp.) and these
wetlands may become cattail choked (Kantrud 1992;
Swanson 1992; Gleason and Euliss 1998; Wiltermuth and
Anteau 2016). Both of these outcomes would represent dra-
matic shifts in the ecology of semipermanently-ponded wet-
lands in the PPR, and neither is favorable for wildlife species

that are major drivers of conservation policy in the region
(e.g., waterfowl).

Terrestrial and aquatic ecological communities in the PPR
evolved in an environment shaped by dynamic hydrological
responses of wetlands to climate variability. Moreover, wet-
land communities of the PPR also evolved under generally
isolated conditions with only periodic-surface-hydrologic
connections among wetlands (Leibowitz and Vining 2003;
Mushet et al. 2015). Stabilized and interconnected wetland
basins are likely to favor invasive species such as fish and
cattail that generally have negative impacts on the native com-
munities of the Northern Prairie Region (Bouffard and
Hanson 1997; Anteau et al. 2011; Wiltermuth 2014). There
have been observed increases in the abundance and occur-
rence of invasive and native fish species in wetlands of the
PPR (Peterka 1989; Anteau and Afton 2008; Wiltermuth
2014). Interconnected and stable lakes, while providing hab-
itat for various species of fish, provide much less food and
foraging habitat for waterbirds because fish reshape inverte-
brate communities (Duffy 1998; Zimmer et al. 2000; Anteau
and Afton 2011; Anteau et al. 2011). Without periodic inter-
annual drawdowns, birds requiring shallow water, exposed
shoreline, or mud banks are also less likely to find suitable
habitat during spring and early summer (Niemuth et al. 2006;
Anteau 2012; McCauley et al. 2016).

Flooding Impacts Inspection of temporal dynamics of the
water volume of Devils Lake in North Dakota provides an
instructive case study illustrating how land use changes
may affect the way higher order watersheds respond to
climate. Measured water volume of Devils Lake (calculat-
ed from available stage data and stage-to-volume tables; U.
S. Geological Survey 2016) has experienced substantial
variation since the 1930s, typified by a marked increase
in volume beginning in the early 1970s (Fig. 4). We used
procedures outlined by McCauley et al. (2015) to make a
climate-based prediction of water volume of Devils Lake
using a moving average of 16 previous years of a standard-
ized precipitation and evapotranspiration index (SPEI16)
derived from readily available spatially explicit climate
data (see Post van der et al. 2016). Similar to McCauley
et al. (2015), we estimated parameters of a predictive mod-
el using data restricted to an era before the recent major
land use changes in the watershed (1930–1960). This sim-
ple linear regression model with a single climate-based
variable explained 92 % of the variation in measured water

Fig. 3 Photo series depicting a
semipermanently-ponded
wetland situated in an undrained
landscape responding to a series
of climatic conditions from 2003
to 2012
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volume during 1930–1960. We used parameter estimates
from this model (Devils Lake volume [km3] = 0.369 +
0.160 * SPEI16) to predict water volume for the period
1910–2014 (Fig. 4). Lake volume predicted solely based
on climate diverged from measured volume after 1960,
suggesting a fundamental change in the way the Devils
Lake watershed responded to variation in climate, poten-
tially due to changes in land use occurring after 1960.
Furthermore, measured lake volume between 1970 and
1990 experienced a cumulative set of increases with each
wetting phase during that time despite numerous dry
phases. This sharply contrasts with climate-predicted
values, which show the lake would have experienced a
relatively stable volume (Fig. 4). This pattern of increasing
water volume, during similar intensity wetting and drying
periods of 1970–1990, seems to be consistent with our
conceptual model (Fig. 2) presented earlier.

Flooding of rivers and lakes is becoming a major issue in the
midcontinent portion of North America and costs of flooding
have been particularly high for population centers located in
and around river floodplains within and downstream of the
PPR. Due to hummocky topography, the PPR was historically
composed of numerous areas that did not contribute to major
watersheds (e.g., Missouri River, Devils Lake, Lake Winnipeg,
etc.). However, once a basin fills to its spill point it would
essentially add that wetland’s entire watershed to the contribut-
ing area of the next higher-ordered watershed. Similar to the
process of consolidation drainage increasing the contributing
area and concomitant runoff, the spilling of water outside a
watershed could unbalance higher-order watersheds and cause
a cascading effect into rivers and large lake systems.
Escalations in the amount of ponded water in wetlands could

also be driven by future changes in the intensity of precipitation
events. Our conceptual model suggests that there may be time-
lags between the perturbation or change and the observed effect
on higher-order watersheds because it may take some time to
fill basins to the point of spilling into higher-order watersheds.
Addressing interacting effects of land use and climate change
on flooding in and downstream of the PPR will require detailed
understanding of the nested hydrologic processes among low-
to high-ordered watersheds.

Anthropogenic Feedbacks The future climate may allow ag-
ricultural producers to intensify cropping practices to increase
production in the PPR because of longer growing seasons and
increased precipitation. Global demand for crop production is
also expected to increase (Tilman et al. 2001; Tilman et al.
2011), and so the economic, technological, climatological,
and geographical parameters will likely dictate changes in
favor of increased extent and intensity of anthropogenic mod-
ifications for agriculture in the PPR (Rashford et al. 2011a, b).
But if climate change also leads to increased wetness in the
PPR, we expect that wetlands will hold water longer, which
could necessitate more consolidation drainage or connections
to stream networks using surface modifications and subsur-
face tile drainage. On a local scale, this may benefit producers
by increasing tillable area. However, over a larger scale, drain-
age of these basins into higher order watersheds means that
some producers will experience increased flooding and de-
creased farmable area. Producers that may have historically
not needed to use drainage systems will need to adopt these
measures to decrease agricultural-land flooding impacts.
Broader-scale adoption of practices to mitigate local flooding
may, thus, have larger scale implications for urban centers and
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other communities located near lakes or rivers, who must then
also adopt flood mitigation strategies. We suggest that the
potential for positive feedbacks between wetland drainage
and climate change will likely cause rapid and non-linear
changes in characteristics of the landscape of the PPR. This
means that in order to evaluate the potential influences of
climate change on wetland hydrology and ecosystems of the
PPR, we first need to fully account for these potential
feedbacks.

Conclusions

Conservation dollars are spent to protect wetlands in the PPR
by many organizations, but changes in hydrology due to cli-
mate and land-use changes may render those investments in-
effective in meeting conservation goals. In addition, past and
future land use will continue to affect wetland hydrology, and
it is uncertain how climate and land-use changes may interact
to influence wetland hydrology. It is unknown if resulting
combinations of land use and climate change will produce
positive, neutral, or negative outcomes for wetland function-
ality, and it is likely that the response will not be consistent
across the PPR. Accordingly, there is a clear need for model-
ling efforts that can provide spatially appropriate state-
dependent predictions of wetland hydrology given changes
in climate and land use. Predicted hydrologic responses will
facilitate additional efforts to examine resulting influence on a
number of key species important for conservation. These ef-
forts would also better inform and quantify wetland ecosystem
services that have broader societal interests than waterbird
conservation, for example flood control and water quality.

Some climate models project increased precipitation in the
Northern Plains (IPCC 2013, 2014; Shafer et al. 2014).
Flooding exacerbated by land-use practices coupled with po-
tential climate change has direct economic implications on
agriculture, transportation infrastructure, and residential and
commercial property (Adger et al. 2005; Carrera et al.
2015). When wetlands increase in size to their spilling point,
they contribute to flows into downstream water bodies
(Wiltermuth 2014). Given existing flooding concerns on the
Missouri River, Red River, and Devils Lake, increased flow
into these systems due to climate and land use changes must
be understood to better predict and manage these problems.
Hydrologic models incorporating climate and land use chang-
es in the PPR are a prerequisite step to understanding surface
outflows from wetlands, and thus provide information neces-
sary for a subsequent economic assessment of conservation
strategies to restore upper-watershed water storage (i.e., func-
tional wetlands complexes) vs. infrastructure to abate flooding
issues (e.g., raising roads, buying out landowners, diversions,
dams, etc.).

When we reviewed what is known about how wetlands
respond hydrologically to anthropogenic changes on the land-
scape we found that we do not have a very clear understanding
of the actual mechanisms driving observed relationships.
Most studies involving land use change have been observa-
tional in nature and it is left up to researchers to offer hypoth-
eses about the mechanisms, our conceptual model included.
We believe this is symptomatic of too few detailed studies
focused onmechanistic functions of wetland hydrology in this
landscape and none that have been adequately replicated
across a land use gradient. Therefore, we contend a number
of prerequisites remain before meaningful predictions can be
made about the effects of climate change on PPR wetlands.
Those evident to us are:

1) An understanding of variation in physical and watershed
characteristics of wetlands with similar hydroperiods
across the PPR

2) Amechanistic understanding of how wetlands respond to
climate across a gradient of anthropogenic modifications
in the PPR

3) Improved climate predictions for the PPR that can predict
potential changes in climate variability including intensity
and duration of wet and dry periods

Climate and land use driven changes in hydrology across
this region have potential to increase risk of flooding, includ-
ing that in metropolitan areas, and cause cascading large-scale
ecological issues (e.g., community shifts and Gulf of Mexico
hypoxia). We contend that there is much at stake to making
informed wetland conservation decisions in the PPR, thus it is
important to inform the public, conservation decision makers,
and policy makers with information about the many ecosys-
tem services provided by wetlands in addition to that of the
existing conservation model (i.e., waterbird habitat).
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